Answer:
A) a = 2.31[m/s^2]; B) t = 14.4 [s]
Explanation:
We can solve this problem using the kinematic equations, but firts we must identify the data:
Vf= final velocity = take off velocity = 120[km/h]
Vi= initial velocity = 0, because the plane starts to move from the rest.
dx= distance to run = 240 [m]
![v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\ a=2.31[m/s^2]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bi%7D%20%5E%7B2%7D%2B2%2Ag%2Adx%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%3D120%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A%5Cfrac%7B1hr%7D%7B3600sg%7D%20%2A%20%5Cfrac%7B1000m%7D%7B1km%7D%20%3D33.33%5Bm%2Fs%5D%5C%5C%5C%5CReplacing%5C%5C33.33%5E%7B2%7D%3D0%2B2%2Aa%2A%28240%29%5C%5C%20a%3D%5Cfrac%7B11108.88%7D%7B2%2A240%7D%5C%5C%20%20a%3D2.31%5Bm%2Fs%5E2%5D%5C%5C)
To find the time we must use another kinematic equation.
![v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Creplacing%3A%5C%5C33.33%3D0%2B%282.31%2At%29%5C%5Ct%3D%5Cfrac%7B33.33%7D%7B2.31%7D%5C%5C%20t%3D14.4%5Bs%5D)
The resultant vector can be determined by the component vectors. The component vectors are vector lying along the x and y-axes. The equation for the resultant vector, v is:
v = √(vx² + vy²)
v = √[(9.80)² + (-6.40)²]
v = √137 or 11.7 units
the focal length <span> is much more decent for a concave, and also worse</span><span> for a convex mirror. When the image that is given, distance is good and decent, images are always on the same area of the mirror as the object given , and it is not fake. images distance is </span>never positive <span>, the image is on the oppisite side of the mirror, so the image must be virtual.</span>
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51