Explanation:
Initial speed of the rocket, u = 0
Acceleration of the rocket, 
Time taken, t = 3.39 s
Let v is the final velocity of the rocket when it runs out of fuels. Using the equation of kinematics as :

Let x is the initial position of the rocket. Using third equation of kinematics as :


Let
is the position at the maximum height. Again using equation of motion as :

Now
and v and u will interchange



x = 524.14 meters
Hence, this is the required solution.
A material you are testing conducts electricity but cannot be pulled into wires. It is most likely a metalloid. Hope this helps!
Answer: 1433.3 m/min
Explanation:
For 86 Km/h converted to a (m/min), convert kilometers to meters, and hour to minutes
So, 86 Km/h means 86 kilometers per 1 hour
- If 1 kilometer = 1000 metres
86 kilometers = 86 x 1000 = 86,000m
- If 1 hour = 60 minute
1 hour = 60 minutes
In m/min: (86,000m / 60 minute)
= 1433.3 m/min
Thus, 86 Km/h convert to 1433.3 m/min
Answer:
In physics, power is the amount of energy transferred or converted per unit time. In the ... Power (physics) ... Angular acceleration / displacement / frequency / velocity. show. Scientists ... Hence the formula is valid for any general situation. ... because they define the maximum performance of a device in terms of velocity ratios
Explanation:
Answer 1) : 62.5 km/hour is the average velocity of the train.
2) The final velocity of the car at the end of 75 m is 14.69 m/s
Explanation:
1) Displacement of the train = 100 km + 150 km = 250 km
Total time train took =1 hour 15 min+ 45 min + 2 hours = 240 min = 4 hours
Average velocity=
62.5 km/hour is the average velocity of the train.
2) The acceleration of the car, a= 1.2 
Distance covered by the car,s = 75 m
Initial velocity of the car ,
= 6 m/s
Final velocity of thre car ,
=?
Using third equation of motion:


The final velocity of the car at the end of 75 m is 14.69 m/s