Answer:
V=27.24 m/s
Explanation:
We need to apply the linear momentum conservation theorem:

The velocity of the eagle its defined by its two components:


because speed is a scalar value:

What we call a "year" is the time a body takes to complete one orbital revolution
in its path around the sun. The way gravity works, the farther a planet is from the
sun, the slower it moves, and the longer it takes to complete that trip. So, farther
out from the sun means a longer "year".
Everybody knows that if you want to get more warmth, then you have to stand closer
to the fire, and it's the same with planets. The farther a planet is from the sun, the less
heat it gets from the sun, and in most cases, that means its average temperature is
lower. (The planet's average temperature is affected by other things besides its distance
from the sun, such as how much heat comes up from inside, and how much heat its
atmosphere traps.)
The farther a planet's rotation axis is tilted from being perpendicular to the plane
of its orbit, the more seasonal variation there can be in the temperature at any one
place on its surface. Of course, this is kind of irrelevant if the planet has no surface.
On ground weight of plane will be measured as its actual weight which will be given as

now when plane is in air its weight is measured as combined effect of earth gravitational force and buoyancy force both
so weight in air will be given as

here since net effect due to air is opposite to the direction of weight so in air the plane weight will be measure less than its weight on ground.
so answer will be
A)more than a plane in the air
Answer:
15 m per second
900m per minute
54,000 per hour
Explanation:
60 divided by 4 to get per second then times 60 for per minutes
then times 60 to get per hour
Answer:
Corresponding raft speed = -0.875 m/s (the minus sign indicates that the raft moves in the direction opposite to the diver)
Explanation:
Law of conservation of momentum gives that the momentum of the diver and the raft before the dive is equal to the momentum of the diver and the raft after the dive.
And since the raft and the diver are initially at rest, the momentum of the diver after the dive is equal and opposite to the momentum experienced by the raft after the dive.
(Final momentum of the diver) + (Final momentum of the raft) = 0
Final Momentum of the diver = (mass of the diver) × (diving velocity of the diver)
Mass of the diver = 73 kg
Diving velocity of the diver = 5.54 m/s
Momentum of the diver = 73 × 5.54 = 404.42 kgm/s
Momentum of the raft = (mass of the raft) × (velocity of the raft)
Mass of the raft = 462 kg
Velocity of the raft = v
Momentum of the raft = 462 × v = (462v) kgm/s
404.42 + 462v = 0
462v = -404.42
v = (-404.42/462) = -0.875 m/s (the minus sign indicates that the raft moves in the direction opposite to the diver)
Hope this Helps!!!