Answer:
<em>c. ABBA counterbalancing
</em>
Explanation:
The student should not use the method because it is a progressive error management technique for each subject by introducing all <em>treatment circumstances twice, first in one sequence, then in the other (AB, BA) by subject counterbalancing.</em>
If participants experience conditions more than once, they experience the conditions first in one order, then the opposite order.
+2 electron charges = 2x1.6x10^-19Coulombs
Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
Density applies to many if not all aspects of life. With density you can explain why ice floats. You can explain why oxygen is on the earth, and not floating around in space( or being replaced by another gas). You can also explain why heat rises while cold air sinks.
I believe the answer is c