Their 'degrees' are the same size. The difference between the Celsius
and Kelvin scales is their zero-point. Zero Kelvin is the absolute zero of
nature and Physics. Zero Celsius is the melting/freezing point of water,
273.15 higher than absolute zero.
The electromagnetic spectrum is traditionally divided into regions of radio waves, microwaves, infrared radiation, visible light, ultraviolet rays, x rays, and gamma rays. ... Wavelength defines the distance between adjacent points of the electromagnetic wave that are in equal phase (e.g., wavecrests)
Answer:
Explanation:
Electric field due to a point charge Q at a point at distance d is given by the relation
E = 
Since Q1 and Q2 are of the same magnitude and distance , so they will create eletric field of same magnitude. Similarly field due to rest of the charges will also be same.
The charges are situated on the corners of a square in such a way that
equal charges of Q1 and Q3 are situated on the diametrically opposite corners of the square. Fields due to these two charges will be equal and opposite in direction. Therefore net field due to these two charges will be zero.
On the same ground, we can say that field due to Q2 and Q4 at the centre will be equal and opposite and therefore they will cancel out each other. Net field at the centre will be zero
Overall, net field due to all the four charges will be zero
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3
It's Photoelectric Effect, I just a test with this same question. I am not good for explaining exactly how, but I was right.