S-waves do<span>, the seismograph </span>will<span> detect </span>P-waves<span> arriving </span>first<span>, and </span>S-waves will<span> follow. The </span>time difference<span>, as recorded on a clock, </span>between<span> when the </span>P-waves<span> and </span>S-waves<span> ... earthquake waves speed up with increasing </span>distance<span>, and the lag time graph</span>
Answer:
If the same volume of air is inhaled and exhaled, the air we breathe out normally weighs more than the air we breathe in.
Since the output from the body normally exceeds the input, breathing leads to weight loss.
Explanation:
If equal volumes of gas is inhaled and exhaled, the exhaled gas is heavier.
The inhaled gas contains Oxygen and majorly Nitrogen.
The exhaled gas contains CO₂, H₂O and a very large fraction of the unused inhaled air that goes into the lungs.
So, basically, the body exchanges O₂ with CO₂ and H₂O (and some other unwanted gases in the body) in a composition that CO₂, the heavier gas of the ones mentioned here, is prominent.
So, because the mass leaving the body is more than the mass entering, breathing leads to a loss of weight. This is one of the reasons why we need food for sustenance. Breathing alone will wear one out.
Answer:
The 40g mass will be attached at 69 cm
Explanation:
First, make a sketch of the meterstick with the masses placed on it;
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm y cm
Apply principle of moment;
sum of clockwise moment = sum of anticlockwise moment
40y = 20 (38)
40y = 760
y = 760 / 40
y = 19 cm
Therefore, the 40g mass will be attached at 50cm + 19cm = 69 cm
12cm 50 cm 69cm
--------------------------------------------------------------------------
↓ Δ ↓
20 g.................50 cm.................40g
38 cm 19 cm
Longitud wave something like that.