Answer:
P = 1 (14,045 ± 0.03 ) k gm/s
Explanation:
In this exercise we are asked about the uncertainty of the momentum of the two carriages
Δ (Pₓ / Py) =?
Let's start by finding the momentum of each vehicle
car X
Pₓ = m vₓ
Pₓ = 2.34 2.5
Pₓ = 5.85 kg m
car Y
Py = 2,561 3.2
Py = 8,195 kgm
How do we calculate the absolute uncertainty at the two moments?
ΔPₓ = m Δv + v Δm
ΔPₓ = 2.34 0.01 + 2.561 0.01
ΔPₓ = 0.05 kg m
Δ
= m Δv + v Δm
ΔP_{y} = 2,561 0.01+ 3.2 0.001
ΔP_{y} = 0.03 kg m
now we have the uncertainty of each moment
P = Pₓ /
ΔP = ΔPₓ/P_{y} + Pₓ ΔP_{y} / P_{y}²
ΔP = 8,195 0.05 + 5.85 0.03 / 8,195²
ΔP = 0.006 + 0.0026
ΔP = 0.009 kg m
The result is
P = 14,045 ± 0.039 = (14,045 ± 0.03 ) k gm/s
Answer rain gauge measures rain shadow units millimetres
Answer:
Explanation:
Option a is correct
If puck and pick constitute a system then the momentum of the system is conserved but not this may not be valid for the puck .
Option e is correct
If puck and pick is the system then momentum is conserved but because of the presence of friction, mechanical energy is not conserved.
Friction will cause the energy to dissipate in heat.
Answer:
Explanation:
Kinetic Energy formula:
KE =
mv²
m=mass
v=speed
Given:
m=0.25kg
v=2.5m/s
Plug the values in:
KE = 1/2(0.25kg)(2.5m/s)²
KE = 0.78125 J (Joules)