Answer:
1⁺ ion
Explanation:
Metals in the first group on the periodic table will prefer to form 1⁺ ion. This is because the 1 valence electron in their orbital.
Most metals are electropositive and would prefer to lose electrons than to gain it.
Like all metals, the group 1 elements called the alkali metals would prefer to lose and electron.
On losing an electron the number of protons is then greater than the number of electrons. This leaves a net positive charge.
The molecules of a solid vibrate faster so that they start spreading out to become a liquid. This energy makes them vibrate faster so the bonds between molecules can't interact all that well anymore creating more distance. The stronger the bonds between the molecules the higher the energy (temperature) has to be to get them away from each other. Hope I didn't confuse you too much!
Answer:
C) is zero
Explanation:
According to the law of energy conservation, the total mechanical energy of the object is conserved. A book falling a distance d would have a change in potential energy, resulting in the same change in kinetic energy. But the total mechanical energy must be the same. So there's 0 change in total energy of the system.
Answer:
0.0196 j
Explanation:
i) The formula for kinetic energy is as follows: 0.5*m*v^2
ii) Since we have all the values all that's left is to plug them into the equation
iii) First, WE MUST, Convert grams into kgs as this is the SI unit of mass so 2.45/1000
iv) All that's left now is to plug it into the equation so:
0.5* (s.45/1000)*(4^2)
v) Lastly we add the unit joules at the end as we're talking about energy
Hope this was useful! :)
Dispersion occurs due to the different degrees of refraction experienced by different colours of light. Light of different colours may travel with the same speed in a vacuum, but they travel at different speeds in some refracting medium. The speed of violet light is relatively lower than that of red light.