It'll beginning to evaporate.
<span>Lithium atoms have one valence electron, where as oxygen atoms have six. Lithium atoms tend to give up their single valence electrons, and oxygen tends to gain two valence electrons from other atoms, like lithium. They do this so they will have filled valence shells. hope this answers your question :)</span>
Thermodynamics, Nuclear Physics, Quantum Physics, Astronomy and Astrophysics
There are two ways to solve this problem. We can use the ICE method which is tedious and lengthy or use the Henderson–Hasselbalch equation. This equation relates pH and the concentration of the ions in the solution. It is expressed as
pH = pKa + log [A]/[HA]
where pKa = - log [Ka]
[A] is the concentration of the conjugate base
[HA] is the concentration of the acid
Given:
Ka = 1.8x10^-5
NaOH added = 0.015 mol
HC2H3O2 = 0.1 mol
NaC2H3O2 = 0.1 mol
Solution:
pKa = - log ( 1.8x10^-5) = 4.74
[A] = 0.015 mol + 0.100 mol = .115 moles
[HA] = .1 - 0.015 = 0.085 moles
pH = 4.74 + log (.115/0.085)
pH = 4.87
Answer:
6.21 moles O
Explanation:
To find the moles of oxygen, you need to (1) convert grams Mn(ClO₄)₄ to moles Mn(ClO₄)₄ (via molar mass) and then (2) convert moles Mn(ClO₄)₄ to moles O (via mole-to-mole ratio from formula subscripts). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units.
Molar Mass (Mn(ClO₄)₄): 452.74 g/mol
1 Mn(ClO₄)₄ = 1 Mn and 4 Cl and 16 O
175.7 g Mn(ClO₄)₄ 1 mole 16 moles O
--------------------------- x ------------------- x --------------------------- = 6.21 moles O
452.74 g 1 mole Mn(ClO₄)₄