Answer:
The <em><u>n = 2 → n = 3</u></em> transition results in the absorption of the highest-energy photon.
Explanation:

Formula used for the radius of the
orbit will be,
where,
= energy of
orbit
n = number of orbit
Z = atomic number
Here: Z = 1 (hydrogen atom)
Energy of the first orbit in H atom .

Energy of the second orbit in H atom .

Energy of the third orbit in H atom .

Energy of the fifth orbit in H atom .

Energy of the sixth orbit in H atom .

Energy of the seventh orbit in H atom .

During an absorption of energy electron jumps from lower state to higher state.So, absorption will take place in :
1) n = 2 → n = 3
2) n= 5 → n = 6
Energy absorbed when: n = 2 → n = 3


Energy absorbed when: n = 5 → n = 6


1.89 eV > 0.166 eV
E> E'
So,the n = 2 → n = 3 transition results in the absorption of the highest-energy photon.
That is the wrong attiude!....dipwad.
By definition we have that the force for time is equal to the product of the mass for the change in speed.
We have then that
F * (delta t) = m * (delta v)
Clearing the mass
m = (F * (delta t)) / (delta v)
Substituting the values
m = ((3.00) * (4.00)) / (7.50-6.00) = 8
answer
The mass of the moving object is 8Kg
Multiplying the ideal gas law constant
Answer:
7.59Ns
Explanation:
Given parameters:
Force = 1360N
Time of contact = 5.85 x 10⁻³s
Unknown:
Impulse = ?
Solution:
The impulse of the ball is given as:
Impulse = Force x time
Impulse = 1360 x 5.85 x 10⁻³ = 7.59Ns