Answer:
a) 3.65 seconds
b) 35.87 m/s
Explanation:
s = Displacement = 65.6 m
u = Initial velocity
v = Final velocity
t = Time taken
a = Acceleration due to gravity = 9.81 m/s² (downward direction is taken as positive and upward is taken as negative)
b) Equation of motion

Initial pop up velocity is 35.87 m/s
a)

It took 3.65 seconds to reach this height
According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Answer:
θ_c = 36.87°
Explanation:
Index of refraction for index medium; n_i = 2
Index of refraction for Refractive medium; n_r = 1.2
Formula to find the critical angle is given;
n_i(sin θ_c) = n_r(sin 90)
Where θ_c is critical angle.
Thus;
2 × (sin θ_c) = 1.2 × 1
(sin θ_c) = 1.2/2
(sin θ_c) = 0.6
θ_c = sin^(-1) 0.6
θ_c = 36.87°
The answer is has no moons. Mars has two moons
They give off a particle to become stable.