1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
earnstyle [38]
3 years ago
5

A wheel 1.0 m in radius rotates with an angular acceleration of 4.0rad/s2 . (a) If the wheel’s initial angular velocity is 2.0 r

ad/s, what is its angular velocity after 10 s? (b) Through what angle does it rotate in the 10-s interval? (c) What are the tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval?
Physics
1 answer:
Oliga [24]3 years ago
6 0

Answer:

(a) ωf= 42 rad/s

(b) θ = 220 rad

(c) at = 4 m/s²  ,  v = 42 m/s

Explanation:

The uniformly accelerated circular movement,  is a circular path movement in which the angular acceleration is constant.

There is tangential acceleration (at ) and is constant.

We apply the equations of circular motion uniformly accelerated :

ωf= ω₀ + α*t  Formula (1)

θ=  ω₀*t + (1/2)*α*t²  Formula (2)

at = α*R  Formula (3)

v= ω*R  Formula (4)

Where:

θ : angle that the body has rotated in a given time interval (rad)

α : angular acceleration (rad/s²)

t : time interval (s)

ω₀ : initial angular velocity ( rad/s)

ωf: final angular velocity ( rad/s)

R : radius of the circular path (cm)

at : tangential acceleration (m/s²)

v : tangential speed (m/s)

Data

α = 4.0 rad/s² : wheel’s angular acceleration

t = 10 s

ω₀ = 2.0 rad/s  : wheel’s initial angular velocity

R = 1.0 m  : wheel’s radium

(a)  Wheel’s angular velocity after 10 s

We replace data in the formula (1):

ωf= ω₀ + α*t

ωf= 2 + (4)*(10)

ωf= 42 rad/s

(b) Angle that rotates the wheel in the 10 s interval

We replace data in the formula (2):

θ=  ω₀*t + (1/2)*α*t²

θ=  (2)*(10) + (1/2)*(4)*(10)²

θ=  220 rad  

θ=  220 rad  

(c) Tangential speed and acceleration of a point on the rim of the wheel at the end of the 10-s interval

We replace data in the Formula (3)

at = α*R = (4)(1)

at = 4 m/s²

We replace data in the Formula (4)

v= ω*R = (42)*(1)

v = 42 m/s

You might be interested in
Now assume that the frictional force f is not at its maximum value. What is the relation between the torque Ï„ applied to each w
leva [86]

Answer:

a)The direction the frictional force will acts is in the positive x direction.

Explanation:

a)The direction the frictional force will acts is in the positive x direction

b)in the horizontal direction, the total force F(total) is equal to 4times the frictional force in the wheel.

F(total)=4f

''f'' is taken as the frictional force.

c)4times the normal force on each wheel minus the acceleration equals zero i.e 4N(wheel)-a=0

=4N(wheel)-mg=0

d) torque is the force that tends to bend rotation

ζ=rf

but acceleration=4×frictional force

cross multiply

f=ζ/r

f=ma/4

ma/4=ζ/r

a=4ζ/r

5 0
3 years ago
Read 2 more answers
Which image shows a non renewable resources?
Radda [10]

Where are the images?!?!?

5 0
3 years ago
Read 2 more answers
Who is the founder of operant conditioning?
Gemiola [76]

Operant conditioning, sometimes called <em>instrumental learning</em>, was first extensively studied by Edward L. Thorndike, who observed the behavior of cats trying to escape from home-made puzzle boxes.

Hope this helps!

7 0
3 years ago
A 46 g domino slides down a 30 degrees incline at a constant speed. What is the coefficient of friction?
blondinia [14]

Answer:

40

Explanation:

30

6 0
3 years ago
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
3 years ago
Other questions:
  • Density
    7·2 answers
  • For an object to be seen, light must leave _______ and enter _______.
    11·1 answer
  • Which one of the following is NOT an evidence of the Big Bang Theory? A. most objects in space are moving away from one another
    14·1 answer
  • A projectile is launched at some angle to the horizontal with some initial speed vi, and air resistance is negligible.(a) Is the
    9·1 answer
  • Two ropes are attached to a tree, and forces of F⃗ 1=2.0iˆ+4.0jˆN and F⃗ 2=3.0iˆ+6.0jˆN are applied. The forces are coplanar (in
    10·1 answer
  • What kind of map might have diagrams of air pressure?
    11·1 answer
  • What are the dark areas on the surface of the Sun?
    10·2 answers
  • A 50.0 g toy car is released from rest on a frictionless track with a vertical loop of radius R (loop-the-loop). The initial hei
    5·1 answer
  • Please help me answer
    13·2 answers
  • In your words, describe how you think life as a human might be different on a world orbiting around a dying star. Think about th
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!