Answer:
It's really important waves type for fulfill human's needs
Explanation:
Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.
EM waves have both Electrical and magnetic features.
they travel in the velocity of light (3*10⁸ ms⁻¹)
they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other
They travel perpendicular to each of those electric and magnetic fields.
Example :
- Radio Wave
- Micro Wave
- IR wave
- Light Wave
- UV rays
- X rays
- Gamma rays
- Cosmic rays
The main importance of em waves is they allow energy to be stored within them and then can be propagated over a large distance using the dielectric and magnetic properties of materials .
This performance has been used in many fields wisely and effectively to make the things easy.
Ex : medicine , Telecommunication , energy , Engineering etc
Isothermal Work = PVln(v₂/v₁)
PV = nRT = 2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J
Isothermal Work = PVln(v₂/v₁) v₂ = ? v₁ = 19L,
1.7 kJ = (5487.24)In(v₂/19)
1700 = (5487.24)In(v₂/19)
In(v₂/19) = (1700/5487.24) = 0.3098
In(v₂/19) = 0.3098
(v₂/19) =

v₂ = 19*

v₂ = 25.8999
v₂ ≈ 26 L Option b.
Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation:
For me: WASH OUR HANDS REGULARLY
The average velocity of the car for the whole journey is 69.57 km/h.
The given parameters:
- <em>Length of the road, L = 320 km</em>
- <em>Distance covered = 240 km at 75 km/h</em>
- <em>time spent refueling, t₂ = 0.6 hr</em>
- <em>Final velocity, = 100 km/hr</em>
The time spent by the before refueling is calculated as follows;

The time spent by the car for the remaining journey;

The total time of the journey is calculated as follows;

The average velocity of the car for the whole journey is calculated as follows;

Learn more about average velocity here: brainly.com/question/6504879