Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m
Answer:
V = 0.0723 volts = 72.3 milivolts
Explanation:
The emf induced in the rod is the motional emf due to the magnetic field. This motional emf can be calculated by the following formula:

where,
V = Motional EMF = ?
v = speed of rod = 12.5 m/s
B = Magnetic Field = 6.23 mT = 0.00623 T
l = Length of rod = 92.9 cm = 0.929 m
θ = angle between v and B = 90°
Therefore,

<u>V = 0.0723 volts = 72.3 milivolts</u>
Answer:
Temperature
Explanation:
The heat flows from high temperature to low temperature.So we can say that temperature is the property that decide the direction of heat flow.Like in the electric system current flow high voltage to low voltage ,so we can say that voltage is the property which determine the direction of current flow.
So the answer is Temperature.
Answer: 12) 1.07 m/s (right) 13) 4.05 m/s 14) 73 m/s 15) 10.9 m/s
Explanation:
12) Conservation of momentum. Momentum is the produce of mass and velocity.
13(2) + 15(-5) = 13(-5) + 15v
v = 1.06666... ≈ 1.07 m/s (right)
13) 18(9) + 22(0) = 18v + 22v
v = 18(9)/40 = 4.05 m/s
14) 0.65(35) + 0.08(0) = 0.65(26) + 0.08v
v = 73.125
15) This is a bit trickier. Let's ASSUME you jump off at 7 m/s relative to the truck. Doing this, we can assume that the reference frame is moving along with the truck at 10 m/s
the conservation of momentum equation becomes
600(0) + 80(0) = 600v + 80(-7)
v = 0.9333333... m/s
adding back the velocity of the reference frame means the truck is now traveling.
10.9333333... ≈ 10.9 m/s
Answer:
13.1 m/s
Explanation:
Given that a baseball is tossed up into the air at an initial velocity 18 m/s. The height of the baseball at time t in seconds is given by h(t) = 18t−4.9t 2 (in meters).
a) What is the average velocity for [1,1.5]?
To calculate the velocity travelled by the ball, differentiate the function.
dh/dt = 18 - 9.8t
Substitute t for 1 in the above Differential function
dh/dt = 18 - 9.8 (1)
But dh/dt = velocity
V = 18 - 9.8
V = 8.2 m/s
Average velocity = ( U + V ) / 2
Average velocity = (18 + 8.2)/2
Average velocity = 26.2/2
Average velocity = 13.1 m/s