Answer:
His average speed was 10.3199 m/s.
Explanation:
<span>The proper </span><span>battery cable connection when jumping two automotive batteries is : </span><span>(a) negative to negative / positive to positive.
</span><span>Connect the red (positive) cable from the car with the bad battery to the red (positive) on the good battery. </span>
<span>Then connect the black (negative) from the good battery to a grounding point on the other car which should be tightened and metal should be clean.
</span>
<span>Once the car with bad battery has started, the removal of the cable should be in the opposite order. The Red (positive) which was the the First Cable to go on should be the last cable to be taken off.</span>
Answer:
I'm taking a wild guess at c
Explanation:
c. winter solstice
It can help determine substances that appear similar but react differently under the same circumstances.
Answer:
The answer is based on the conservation of energy law; something you should really understand by now.
For convenience we can hold one of the two charges still; it becomes the frame of reference. And everything we say is in reference to the designated static charge, call it Q.
So the moving charge, call it q, has total energy TE = PE. It's all potential energy as we start with q not moving.
It has potential energy because in order to separate q from Q, we had to do work, add energy, on q. And from the COE law, that work added is converted into PE.
It's a bit like lifting something off the ground. That's work and it becomes GPE. So there's some work, in separating the two charges in the first place.
But there's more.
Now we let q go. As opposites attract, q is pulled to Q. And that force from Q is working on q, force over distance. Which means the potential energy q started with is being converted into kinetic energy. q is accelerating and picking up speed.
And there's more work, done by the EMF on charge q. That converts the PE into KE and the q charge smashes into Q with some kinetic energy.