1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandr82 [10.1K]
3 years ago
14

A line from the Brackett series of hydrogen has a wavelength of 1945nm (or 1.0979x10^7m). From which state did the electron orig

inate.
Physics
1 answer:
Zarrin [17]3 years ago
5 0
We use the Rydberg Equation for this which is expressed as:

<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]

Solving for n2, we obtain n=1.
You might be interested in
When heating a liquid in a test tube, which of the following safety precautions should you take?. . 1.Wear latex gloves.. 2. Hea
marusya05 [52]
4 for sure because you dont want anything spilling on you or others that is harmful.
8 0
3 years ago
Read 2 more answers
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
Which of these is a mixture?
PSYCHO15rus [73]

Answer:

Air is a mixture.

Explanation:

Air is a homogeneous mixture. It is made up of gaseous substances such as nitrogen, oxygen, and smaller amounts of others.

Carbon dioxide is a pure substance, not a mixture.

Carbon is another pure substance, it cannot be separated into other substances.

Oxygen is just oxygen, it does not contain any other substance.

5 0
4 years ago
Read 2 more answers
A football player kicks a ball with a mass of 0.42 kg. The average acceleration of the football was 14.8 m/s².
kvasek [131]
D.6.22N. because .42kg * 14.8m/s=6.22 N[meaning newtons}.
6 0
3 years ago
Read 2 more answers
A mass resting on a horizontal, frictionless surface is attached to one end of a spring; the other end is fixed to a wall. It ta
Tomtit [17]

Answer:

(a) 185 N/m

(b) 3.083 kg

Explanation:

(a)

Using,

E = 1/2ke²....................... Equation 1

Where E = work done to compress the spring, k = spring constant of the spring, e = compression of the spring.

make k the subject of the equation

k = 2E/e²............... Equation 2

Given: E = 3.7 J, e = 0.20 m

Substitute into equation 2

k = 2(3.7)/0.2²

k = 185 N/m.

(b)

Using,

F = ma.............. Equation 2

Where F = force applied to the spring, m = mass attached to the spring, a = acceleration of the spring.

But from hook's law,

F = ke................. Equation 3

substitute equation 3 into equation 2

ke = ma

make m the subject of the equation

m = ke/a................ Equation 4

Given: k = 185 N/m, e = 0.2 m, a = 12 m/s²

Substitute into equation 4

m = 185(0.2)/12

m = 3.083 kg

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the amount of heat, in calories, given off from a 5 g piece of aluminum when it cools from 80°C to 20°C? The specific he
    15·1 answer
  • It takes a bus driver 30 min to pick up students from four stops. The last stop is at the corner of green street and route 70. T
    10·1 answer
  • Two coils that are separated by a distance equal to their radius and that carry equal currents such that their axial fields add
    8·1 answer
  • Consider two rocks with masses of 1 and 10 kilograms. What is the relation between their inertias? Between their masses? Between
    11·1 answer
  • Is air made of matter ?​evidence and reasoning.
    15·1 answer
  • Can someone pls explain this question to me. Thanks in advance! ​
    11·1 answer
  • A 1400.0 kg car crests a 3200.0 m pass in the mountains and briefly comes to rest. The car descends 1000 m before climbing and c
    9·1 answer
  • Convert 47 meters to gigameters
    5·1 answer
  • What does the double arrow in the diagram below label?<br> ( click photo)
    7·1 answer
  • What does the temperature of the gas between galaxies in galaxy clusters tell us about the mass of the cluster
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!