wavelength of the EM wave produced by your iclicker is 0.33 m.
<h3>What makes an EM wave?</h3>
- When an electric field (illustrated in red arrows) combines with a magnetic field, electromagnetic waves are generated (which is shown in blue arrows). An electromagnetic wave's magnetic and electric fields are perpendicular to each other and to the wave's direction.
- A changing magnetic field causes a changing electric field, and vice versa—the two are inextricably related. Electromagnetic waves are created by changing fields. Electromagnetic waves, unlike mechanical waves, do not require a medium to propagate.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m = 0.333 m
To learn more about electromagnetic waves refer,
brainly.com/question/25847009
#SPJ1
Increasing mass increases kinetic energy. This can be seen in the equation KE = 1/2 (m) (v)^2
If you found this helpful, please brainliest me!
<span><span>1.
</span>Question : What part of the plant that transport
water from its root to its leaves.
The answer is the stem. The stem connects the plant’s root and leaves, it is
responsible for transporting water that is absorbed by the root going to the
leaves, it is also responsible for transporting nutrients absorbed with the
leaves coming from the sun or any nutrients going to the roots to make is grow
faster and healthy. Stem is the one that connects leaves and root and the one
the does the transporting job.</span>
Answer:
The radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Explanation:
Given;
intensity of light, I = 1 kW/m²
The radiation pressure of light is given as;

I kW = 1000 J/s
The energy flux density = 1000 J/m².s
The speed of light = 3 x 10⁸ m/s
Thus, the radiation pressure of the light is calculated as;

Therefore, the radiation pressure of the light is 3.33 x 10⁻⁶ Pa.
Answer:
Option-C (Lipoprotein profile)