Answer:
Option A nuclear
Explanation:
The rate of electricity production in nuclear power plant is much higher as compared to the rate of electricity generation in gas, wind and solar power plants.
Thus, in case where large amount of electricity is to be produced in a short period then one must rely on nuclear power plants.
Therefore, option A is correct
The position vector can be
transcribed as:
A<span> = 6 i + y j
</span>
i <span>points in the x-direction and j points
in the y-direction.</span>
The magnitude of the
vector is its dot product with itself:
<span>|A|2 = A·A</span>
<span>102 = (6 i +
y j)•(6 i+ y j)
Note that i•j = 0, and i•i = j•j =
1 </span>
<span>100 = 36 + y2
</span>
<span>64 = y2</span>
<span>get the square root of 64 = 8</span>
<span>The vertical component of the vector is 8 cm.</span>
Answer:
=24.25 ^−1
Explanation:
Let and be initial and final velocity of the body respectively,
be acceleration due to gravity ( 9.8^−2 ), ℎ be the height of the body.
=0 ^ −1
ℎ=30
we know that, ^2−^ 2=2ℎ
^2=2∗9.8∗30
^2=588
=24.25 ^−1
4 atoms
Explanation:
On the product side, we expect to find 4 atoms of the product.
An atom is the smallest indivisible particle that takes part in a chemical reaction.
An element is a distinct substance that cannot be split-up into simpler substances. Such substances consist of only one kind of atom.
In this reaction we have:
2 elements: Mg O
on the reactant side:
We have two moles of Mg: 2 atoms of Mg
1 mole of oxygen gas: 2 atoms of O
total atoms: 4 atoms
According to the law of conservation of matter "in a chemical reaction, matter is neither created nor destroyed".
We expect to find 4 atoms of products which is MgO on the product side.
2Mg + O₂ → 2MgO + heat
Learn more:
Conservation of matter brainly.com/question/2190120
#learnwithBrainly
Answer:

Explanation:
As we know that Far sighted person has near point shifted to 80 cm distance
so he is able to see the object 80 cm
now the distance of lens from eye is 2 cm
and the person want to see the objects at distance 10 cm
so here the image distance from lens is 80 cm and the object distance from lens is 8 cm
now from lens formula we have


