The answer would be stay because the surface is flat so it will stay!
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.
It takes significantly stronger magnetic and electric field strengths to move a beam of alpha particles compared with the beam of electrons(betaparticles) because the charge of an alpha particle is twice stronger than a beta particle. Therefore, more energy is needed to move the alpha particle.
Answer:
Ff = 19.6 N
Explanation:
So since its saying whats the minimum F to move the block, we will use static friction (0.5).
We will use the equation for force of friction, which is Ff = uFn
Ff = (0.5)(4)(9.8)
Ff = 19.6 N
this is the minumum force needed to move the block, as that is the frictional force. You would need to apply a minimum force of 19.6 N to move the block