Answer:
The Hydrostatic force is 
The location of pressure center is
Explanation:
From the question we are told that
The height of the gate is 
The weight of the gate is 
The height of the water is 
The density of water is 
Note used
for height of water and height of gate immersed by water since both have the same value
The area of the gate immersed in water is mathematically represented as

substituting values


The hydrostatic force is mathematically represented as

Where


So


The center of pressure is mathematically represented as

Where
is the moment of inertia of the gate which mathematically represented as

The
is the height of gate immersed in water
Thus


Answer:
22.2 W
Explanation:
First of all, we calculate the work done by moving the wagon, using the formula:

where
F = 20 N is the magnitude of the force
d = 1000 m is the displacement of the wagon
is the angle between the direction of the force and of the displacement (assuming the force is applied in the direction of motion)
Substituting, we find

Now we can find the power generated, which is equal to the ratio between the work done and the time taken:

where
W = 20,000 J
t = 15 min = 900 s
Substituting,

And the same value in Joules/second (remember that 1 Watt = 1 Joule/second)
A billiard ball. unless hit, the balls stay at rest. however when hit into another, the balls do not stop unless acted upon by another force.
Answer: 0.333 h
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula</u>:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the material (the quantity we are asked to find)
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Clearing
:
(6)
Finally:
This is the half-life of the Bismuth-218 isotope