Answer:
A. Mrŵ² = ųMg
Ŵ = (ųg/r)^½
B.
Ŵ =[ (g /r)* tan á]^½
Explanation:
T.v.= centrepetal force = mrŵ²
Where m = mass of block,
r = radius
Ŵ = angular momentum
On a horizontal axial banking frictional force supplies the Pentecostal force is numerically equal.
So there for
Mrŵ² = ųMg
Ŵ = (ųg/r)^½
g = Gravitational pull
ų = coefficient of friction.
B. The net external force equals the horizontal centerepital force if the angle à is ideal for the speed and radius then friction becomes negligible
So therefore
N *(sin á) = mrŵ² .....equ 1
Since the car does not slide the net vertical forces must be equal and opposite so therefore
N*(cos á) = mg.....equ 2
Where N is the reaction force of the car on the surface.
Equ 2 becomes N = mg/cos á
Substituting N into equation 1
mg*(sin á /cos á) =mrŵ²
Tan á = rŵ²/g
Ŵ =[ (g /r)* tan á]^½
Answer:
An instrument for measuring the density of liquids.
Explanation:
A hydrometer is an instrument used to determine specific gravity. It operates based on the Archimedes principle that a solid body displaces its own weight within a liquid in which it floats. Hydrometers can be divided into two general classes: liquids heavier than water and liquids lighter than water.
Thermohydrometers is one type of hydrometer.
Answer:
0 is your answereeeeerrrrr
Its most likely C. Remember the bigger the vehicle the bigger the area it needs to make a safe turn.
You must find the component of the force before calculating