Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:

Explanation
(m) is measured in kilograms (kg)
<h2>(F) is measured in newtons (N)</h2>
<h3>acceleration (a) is measured in metres per second squared (m/s²)</h3>
Answer:
c. The coefficient of kinetic friction is less than the coefficient of static friction
Explanation:
When the box finally does break loose. Then the component of the box weight which is parallel to the board weight parallel component, is equal to the
.

For the box to acce;erate thee must be non-zero net force acting on the box parallel to the board. Or we can say,

Therefore the force of kinetic friction must be less than the force of static friction. Thus,

The horizontal component of the magnetic field is 12.6 μT.
The magnetic influence on moving electric currents, electric charges, and magnetic materials is described by a magnetic field, which is a vector field. When a charge moves through a magnetic field, a force that is perpendicular to both its own velocity and the magnetic field operates on it.
The horizontal component of the Earth's magnetic field is perpendicular to the axis of a circular coil with five turns and a diameter of D = 30.0 cm that is vertically orientated.
A coil current of I = 0.600 A causes a horizontal compass to deflect 45.0° from magnetic north when it is positioned in the coil's center.
Let B be the magnetic field and R be the radius of the circular coil.
Then the horizontal component of the Earth's magnetic field is given as:
B(h) = B(coil) = μ₀ NI / 2R
B(h) = (4π × 10⁻⁷ ) (5)(0.6) / 0.3
B(h) = 12.6 μT
Learn more about magnetic field here:
brainly.com/question/14411049
#SPJ4