Answer:
Time, t = 80 seconds
Explanation:
Given that,
The frequency of the oscillating mass, f = 1.25 Hz
Number of oscillations, n = 100
We need to find the time in which it makes 100 oscillations. We know that the frequency of an object is number of oscillations per unit time. It is given by :



t = 80 seconds
So, it will make 100 oscillations in 80 seconds. Hence, this is the required solution.
Answer:
Law 1. A body continues in its state of rest, or in uniform motion in a straight line, unless acted upon by a force.
Law 2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the force.
Law 3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
The formula that is applicable here is E = kQ/r^2 in which the energy of attraction is proportional to the charges and inversely proportional to the square of the distance. In this case,
kQ1/(r1)^2 = kQ2/(r2)^2 r1=l/3, r2=2l/3solve Q1/Q2
kQ1/(l/3)^2 = kQ2/(2l/3)^2 kQ1/(l^2/9) = kQ2/(4l^2/9)Q1/Q2 = 1/4
Magnitude of acceleration = (change in speed) / (time for the change).
Change in speed = (27 - 0) = 27 m/s
Time for the change = 10 s
Magnitude of acceleration = (27 m/s) / (10 s) = 2.7 m/s² .
Answer:
sorry i throght i had the answer
Explanation: