Answer:
A
Explanation:
When friction slows a sliding block, <u>the kinetic energy of the block is transformed into internal energy
.</u>
<em>The frictional movement of two surfaces over one another leads to the conversion of some of their kinetic energies to another energy - heat or thermal energy. Hence, the temperatures of the objects are raised in the process. </em>
<u>Therefore, when a sliding block is slowed down due to friction, some of the kinetic energy of the block would be transformed into internal energy in the form of heat.</u>
The correct option is A.
Answer:

Explanation:
From the question we are told that:
Length 
Distance apart 
Electron Transferred 
Therefore
Total Charge
Since Charge on each electron is

Therefore


Generally the equation for Charge density is mathematically given by

Where
Area


Therefore


Generally the equation for Electric Field in the capacitor is mathematically given by



To solve this problem, we are going to use the formula for
work which is Fd where x and y are measured separately.
X direction: W = 13.5 x 230 = 3105 Joules
Y direction: W = -14.3 x -165 = 2360 Joules
So the total work is getting the sum of the two: 3105 + 2360
= 5465 Joules
Answer:
1.82 rad/s².
Explanation:
Applying,
α = (ω₂-ω₁)/t..................... Equation 1
Where α = angular acceleration of the fan blades, ω₂ = final angular velocity of the fan blades, ω₁ = initial angular velocity of the fan blades, t = time.
Given: ω₂ = 350 rpm = (350×0.1047) rad/s = 36.645 rad/s. ω₁ = 250 rpm = (250×0.1047) rad/s = 26.175 rad/s, t = 5.75 s.
Substitute into equation 1
α = (36.645-26.175)/5.75
α = 10.47/5.75
α = 1.82 rad/s².
Hence the magnitude of the angular acceleration of the fan blades = 1.82 rad/s²