The three resistors are connected to the same points of the circuit, so they are in parallel configuration. The equivalent resistance of 3 resistors in parallel is given by:

If we plug the values of the resistances into the formula, we find

From which we find the equivalent resistance:

So, the correct answer is B.
Answer:
Acceleration due to gravity will be 
Explanation:
We have given length of pendulum l = 55 cm = 0.55 m
It is given that pendulum completed 100 swings in 145 sec
So time taken by pendulum for 1 swing 
We have to find the acceleration due to gravity at that point
We know that time period of pendulum;um is given by

So 

Squaring both side


So acceleration due to gravity will be 
Answer:
the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Explanation:
We will use Bernoulli's theorem in order to determine the pressure lift:
ΔP = 1/2 (ρ)(v₂² - v₁²)
the generated pressure lift is ΔP = 1000 N/m²
Therefore,
1000 = 1/2(ρ)(v₂² - v₁²)
v₂² - v₁² = 2000 / ρ
v₂² = (2000 N/m² / 1.29 kg/m³) + (62 m/s)²
v₂ = √[ (2000 N/m² / 1.29 kg/m³) + (62 m/s)² ]
<em>v₂ = 73.4 m/s </em>
<em></em>
Therefore, the aircraft must travel at a speed of <em>73.4 m/s</em> in order to create the ideal lift.
Answer:
The average power is calculated as 735.0 W
Solution:
As per the question:
Total mass, M = 1200 kg
Counter mass of the elevator, m = 950
Distance traveled by the elevator, d = 54 m
Time taken, t = 3 min = 180 s
Now,
To calculate the average power:
First, we find the force needed for lifting the weight:
Force, F = (M - m)g = 
Now, the work done by this force:
W = Fd = 
Average power is given as:
