1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
2 years ago
14

The graph represents velocity over time...

Physics
1 answer:
Nady [450]2 years ago
8 0

Answer:

where is the graph I can't see it how can I solve the problem if I don't see the graph can you show the graph please

You might be interested in
What is the relation between inertia and mass?
aleksandr82 [10.1K]

Answer:

The tendency of an object to resist changes in its state of motion varies with mass. Mass is that quantity that is solely dependent upon the inertia of an object. The more inertia that an object has, the more mass that it has. A more massive object has a greater tendency to resist changes in its state of motion.

Explanation:

8 0
3 years ago
How long will your trip take if you travel 4000 m at an average speed of 8m/s
SpyIntel [72]
  • Answer:

<em>500 sec</em>

<em>8 min 20 sec</em>

  • Explanation:

<em>Hi there !</em>

<em />

<em>8 m ................ 1 s </em>

<em>4000 m ........ x s</em>

<em>x = 4000m×1s/8m = 500 sec = 8 min 20 sec</em>

<em />

<em>Good luck ! </em>

8 0
3 years ago
Read 2 more answers
You and a partner sit on the floor and stretch out a coiled spring to a length of 7.2 meters. You shake the coil so you
vekshin1

Answer:

Approximately 5.9\; {\rm m\cdot s^{-1}} (assuming that the partner is holding the other end of the coil stationary.)

Explanation:

In a standing wave, an antinode is a point that moves with maximal amplitude, while a node is a point that does not move at all. There is an antinode between every two adjacent nodes. Likewise, there is a node between every two adjacent antinodes.

The side of the spring that is being shaken moving with maximal amplitude. Hence, that point on this spring would also be an antinode. In contrast, the side of the spring that is held still (does not move at all) would be a node.

There would be a node between:

  • the antinode at the end of the spring that is being shaken, and
  • the antinode between the two ends of this spring.

Overall, the nodes and antinodes on this spring would be:

  • node at the end that is being held still,
  • antinode (as mentioned in the question),
  • node (inferred, not mentioned in the question), and
  • antinode at the end that is being shaken.

The distance between two adjacent nodes is equal to one-half (that is, (1/2)) the wavelength of the wave. The distance between a node and an adjacent antinode is one-quarter (that is, (1/4)) of the wavelength of the wave.

Thus, if the wavelength of the wave in this question is \lambda, the length of this spring would be:

\displaystyle \frac{1}{2}\, \lambda + \frac{1}{4}\, \lambda = \frac{3}{4}\, \lambda.

The question states that the length of this coiled spring is 7.2\; {\rm m}. In other words, (3/4) \, \lambda = 7.2\; {\rm m}. The wavelength of this wave would be (7.2\; {\rm m}) / (3/4) = 9.6\; {\rm m}.

The frequency f of this wave is the number of cycles in unit time:

\begin{aligned} f &= \frac{10}{16.3\; {\rm s}} \approx 0.613\; {\rm s^{-1}}\end{aligned}.

Hence, the speed v of this wave would be:

\begin{aligned} v &= \lambda\, f \\ &=9.6\; {\rm m} \times 0.613\; {\rm s^{-1}} \\ &\approx 5.9\; {\rm m \cdot s^{-1}}\end{aligned}.

3 0
2 years ago
Investigations provide large amounts of information about a wide range of variables.
Klio2033 [76]

Hello this is to other people looking for the answer. Everyone else is wrong. I just took the quiz on e2020. The answer actually Comparative. Your welcome. Have a nice day.

8 0
3 years ago
A student witnesses a flash of lightning and then t=2.5s later the student hears assiciated clap of thunder. (please show work)
frosja888 [35]

Answer:

857.5 m

2.8583×10⁻⁶ seconds

Explanation:

Time taken by the sound of the thunder to reach the student = 2.5 s

Speed of sound in air is 343 m/s

Speed of light is 3×10⁸ m/s

Distance travelled by the sound = Time taken by the sound × Speed of sound in air

⇒Distance travelled by the sound = 2.5×343 = 857.5 m

⇒Distance travelled by the sound = 857.5 m

Time taken by light = Distance the light travelled / Speed of light

\text{Time taken by light}=\frac{857.5}{3\times 10^8}\\\Rightarrow  \text{Time taken by light}=2.8583\times 10^{-6}

Time taken by light = 2.8583×10⁻⁶ seconds

3 0
3 years ago
Other questions:
  • Why does the frequency of a wave increase as the wavelength decreases?
    7·2 answers
  • A student conducted an experiment that used two rose plants to determine if a liquid formula for fertilizer was better than a dr
    9·1 answer
  • What is the period of a wave if the wavelength is 100 m and the speed is 200 m/s?
    8·2 answers
  • what’s the velocity of a bus travelling through a town with a mass of 5040 kg and kinetic energy of 493,900 j ?
    13·1 answer
  • Photosynthesis is an endothermic chemical reaction that forms sugars from carbon dioxide, water, and the sun's energy. Which of
    13·2 answers
  • In the modern quantum-based atomic theory, what is the name given to a particular space around the nucleus in which an electron
    14·1 answer
  • 7. In what ways has science harmed us?​
    5·1 answer
  • What causes sounds that are lower than 0 decibels?
    8·1 answer
  • How many kcalories are provided by a food that contains 25 g carbohydrate, 6 g protein, and 5 g fat?
    12·1 answer
  • It has been suggested that rotating cylinders about 14.5 mi long and 4.78 mi in diameter be placed in space and used as colonies
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!