Answer:
y = -19.2 sin (23.15t) cm
Explanation:
The spring mass system is an oscillatory movement that is described by the equation
y = yo cos (wt + φ)
Let's look for the terms of this equation the amplitude I
y₀ = 19.2 cm
Angular velocity is
w = √ (k / m)
w = √ (245 / 0.457
w = 23.15 rad / s
The φ phase is determined for the initial condition t = 0 s
, the velocity is negative v (0) = -vo
The speed of the equation is obtained by the derivative with respect to time
v = dy / dt
v = - y₀ w sin (wt + φ)
For t = 0
-vo = -yo w sin φ
The angular and linear velocity are related v = w r
v₀ = w r₀
v₀ = v₀ sinφ
sinφ = 1
φ = sin⁻¹ 1
φ = π / 4 rad
Let's build the equation
y = 19.2 cos (23.15 t + π/ 4)
Let's use the trigonometric ratio π/ 4 = 90º
Cos (a +90) = cos a cos90 - sin a sin sin 90 = 0 - sin a
y = -19.2 sin (23.15t) cm
Answer: 8.6 µm
Explanation:
At a long distance from the source, the components (the electric and magnetic fields) of the electromagnetic waves, behave like plane waves, so the equation for the y component of the electric field obeys an equation like this one:
Ey =Emax cos (kx-ωt)
So, we can write the following equality:
ω= 2.2 1014 rad/sec
The angular frequency and the linear frequency are related as follows:
f = ω/ 2π= 2.2 1014 / 2π (rad/sec) / rad = 0.35 1014 1/sec
In an electromagnetic wave propagating through vacuum, the speed of the wave is just the speed of light, c.
The wavelength, speed and frequency, are related by this equation:
λ = c/f
λ = 3.108 m/s / 0.35. 1014 1/s = 8.6 µm.
Saturn is very commonly known for its rings