I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
Answer:
Amoebas have projections called pseudopods
Explanation:
Pseudopodia is the locomatary organ of amoeba. It helps them in movement and transportation.
Answer:
73.67 m
Explanation:
If projected straight up, we can work in 1 dimension, and we can use the following kinematic equations:
,
Where
its our initial height,
our initial speed, a the acceleration and t the time that has passed.
For our problem, the initial height its 0 meters, our initial speed its 38.0 m/s, the acceleration its the gravitational one ( g = 9.8 m/s^2), and the time its uknown.
We can plug this values in our equations, to obtain:

note that the acceleration point downwards, hence the minus sign.
Now, in the highest point, velocity must be zero, so, we can grab our second equation, and write:

and obtain:



Plugin this time on our first equation we find:


Answer:
7.53 km
Explanation:
We at given;
Speed of runner; v_r = 8.5 km/hr
Speed of bird; v_y = 17 km/hr
L = 6.4 km
We know that; time = distance/speed.
We are told that the bird starts from 6.4 km from the start and that it flies back to meet the runner after it reaches the finish line. If the total distance back to the runner is x, it means bird distance is 6.4 + (6.4 - x) = 12.8 - x
Thus;
Time of bird(t_y) = (12.8 - x)/17
Thus,
Time of runner(t_r) = x/8.5 hr
To find x, we have to equate the times of the runner and the bird.
Thus;
x/8.5 = (12.8 - x)/17
Multiply both sides by 17 to get;
2x = 12.8 - x
2x + x = 12.8
3x = 12.8
x = 12.8/3
x = 4.27 km
Thus, cumulative distance traveled by bird is; 12.8 - 4.27 = 7.53 km
Answer:
<em>Efficiency of a machine is 90% this means that the total energy produced to the machine only 90% is useful and given as a output.</em>
<em>Machines are not 100% efficient because some of the work done by a machine is used to overcome friction</em>