Answer:
n_cladding = 1.4764
Explanation:
We are told that θ_max = 5 °
Thus;
θ_max + θ_c = 90°
θ_c = 90° - θ_max
θ_c = 90° - 5°
θ_c = 85°
Now, critical angle is given by;
θ_c = sin^(-1) (n_cladding/n_core)
sin θ_c = (n_cladding/n_core)
n_cladding = (n_core) × sin θ_c
Plugging in the relevant values, we have;
n_cladding = 1.482 × sin 85
n_cladding = 1.4764
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.
Answer:
Explanation:required formula is
W 1=F*S
W1=work done by Sam =?
F=force applied by sam=150N
S=displacement =10m
again
W2=F*S
W2=work done by friction =?
S=displacement =10m
F=friction =25N
W=W1-W2=net work done
please feel free to ask if you have any questions
Answer:
Explanation:
velocity of sound in air at 20⁰C is 343 m /s
velocity of sound in water at 20⁰C is 1481 m /s
The wavelength of the sound is 2.86 m in the air so its frequency
= 343 / 2.86 = 119.93 .
This frequency of 119.93 will remain unchanged in water .
wavelength in water = velocity in water / frequency
= 1481 / 119.93
= 12. 35 m .
Answer: when you increase or decrease your speed.
Explanation:
Moving a skate at rest, you need to apply force in order to cause acceleration.
F = ma Where
F = force applied
m = mass of the skate
a = acceleration
The initial velocity u will be equal to zero and the skate will acceleration to a certain velocity.
as you skate down your neighborhood sidewalk, you will accelerate when you increase your speed. Because
Acceleration is the rate of change of velocity. That is,
Acceleration = change in velocity/ time.
And also, you will decelerate when you reduce the speed or velocity down your neighborhood sidewalk.