The daughter isotope : Radon-222 (Rn-222).
<h3>Further explanation</h3>
Given
Radium (Ra-226) undergoes an alpha decay
Required
The daughter nuclide
Solution
Radioactivity is the process of unstable isotopes to stable isotopes by decay, by emitting certain particles,
- alpha α particles ₂He⁴
- beta β ₋₁e⁰ particles
- gamma particles ₀γ⁰
- positron particles ₁e⁰
- neutron ₀n¹
The decay reaction uses the principle: the sum of the atomic number and mass number before and after decay are the same
Radium (Ra-226) : ₈₈²²⁶Ra
Alpha particles : ₂⁴He
So Radon-226 emits alpha α particles ₂He⁴ , so the atomic number decreases by 2, mass number decreases by 4
The reaction :
₈₈²²⁶Ra ⇒ ₂⁴He + ₈₆²²²Rn
Answer:
No, because Flourine can only form 1 bond, thus backbonding is not obtainable
Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.
Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K