1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
4 years ago
14

The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula: =E−Ryn2 In this equation Ry stands for

the Rydberg energy, and n stands for the principal quantum number of the orbital that holds the electron. (You can find the value of the Rydberg energy using the Data button on the ALEKS toolbar.) Calculate the wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron from an orbital with =n10 to an orbital with =n8. Round your answer to 3 significant digits.
Physics
1 answer:
skelet666 [1.2K]4 years ago
3 0

Answer:

  λ = 162 10⁻⁷ m

Explanation:

Bohr's model for the hydrogen atom gives energy by the equation

         E_{n} = - k²e² / 2m (1 / n²)

Where k is the Coulomb constant, e and m the charge and mass of the electron respectively and n is an integer

The Planck equation

           E = h f

The speed of light is

          c = λ f

          E = h c /λ

For a transition between two states we have

          E_{n} - E_{m} = - k²e² / 2m (1 / n_{f}² -1 / n_{i}²)

           h c / λ = -k² e² / 2m (1 / n_{f}² - 1/ n_{i}²)

           1 / λ = (- k² e² / 2m h c) (1 / n_{f}² - 1/n_{i}²)

The Rydberg constant with a value of 1,097 107 m-1 is the result of the constant in parentheses

Let's calculate the emission of the transition

            1 /λ = 1.097 10⁷ (1/10² - 1/8²)

            1 / λ = 1.097 10⁷ (0.01 - 0.015625)

            1 /λ = 0.006170625 10⁷

            λ = 162 10⁻⁷ m

You might be interested in
Please help! I especially need help with the second question but help with the first one would be most appreciated!
lara31 [8.8K]

Answer:

a) Team A will win.

b) The losing team will accelerate towards the middle line with 0.01 m/s^{2}

Explanation:

Given that Team-A pulls with a force , F_{1} = 50N

and Team-B pulls with a force , F_{1} = 45N

∵ F_{1} > F_{2}

The rope will move in the direction of force F_{1}.

∴ Team-A will win.

b) Considering both the teams as one system of total mass , m = 246+253 = 499 kg

Net force on the system , F = F_{1} - F_{2} = 50-45 = 5N

Applying Newtons first law to the system ,

F = ma , where 'a' is the acceleration of the system.

Since , both the teams are connected by the same rope , their acceleration would be the same.

∴ 5 = 499×a

∴ a = 0.01 m/s^{2}

4 0
4 years ago
Peering through a telescope could be considered Step 1 of the scientific method.<br> True<br> False
aleksklad [387]

Answer:

<em><u>True:</u></em> because when u look thru a telescope you are making an observation

Explanation:

4 0
2 years ago
Read 2 more answers
Which statement about acids is true? A. Weak acids ionize completely. B. Acids turn red litmus paper blue. C. Acids conduct elec
Vinil7 [7]
Id say d because it releases hydrogen and on the other hand a base receives it
<span />
6 0
3 years ago
As a wave moves through a medium, particles are displaced and (2 points)
Scorpion4ik [409]

As a wave moves through a medium, particles are displaced and return to their normal position after the wave passes.

Explanation:

A wave is a traveling disturbance that  carries energy from one location to  another. All waves move in straight lines  outward and away from the source of a  disturbance. Like the radiating circular  ripples, the waves of water carry energy  away from where a rock was dropped into  the pond.

Waves can move as a single pulse or as a continuous series of waves, carrying  energy away from its source. A pulse is a single disturbance, wave, or ripple that moves  outward from the point of disturbance. A train of waves are many waves emitted over and  over again from a single source.

As waves travel through matter, they will temporarily  displace the molecules or particles in matter up-and-down  or side-to-side. Waves move the energy but they do not  carry the matter with them longitudinally as they move  through matter. Once the disturbance passes, the medium  will return to its original state or position.

Therefore, as the waves move through a medium, particles are displaced and return to their normal position after the wave passes.

7 0
3 years ago
suppose that you look into a photometer's eyepiece and the fluorescent disks appear to be equal in intensity. If the distance be
ehidna [41]
Use the Inverse square law, Intensity (I)<span> of a light </span>is inversely proportional to the square of the distance(d).

I=1/(d*d)

Let Intensity for lamp 1 is L1 distance be D1 so on, L2 D2 for Intensity for lamp 2 and its distance.

L1/L2=(D2*D2)/(D1*D1)

L1/15=(200*200)/(400*400)
L1=15*0.25
L1=3.75 <span>candela</span>
3 0
3 years ago
Other questions:
  • Please help on this one?
    14·1 answer
  • The elastic portion of the downward-sloping straight-line demand curve lies:_______
    13·1 answer
  • Advection fog occurs when humid air move over cold ground
    8·1 answer
  • A car travels 35 km west and 90 km north in two hours what is its average velocity?
    8·1 answer
  • We are constantly surrounded by many types of energy transfers and transformations, showing that energy in a system is conserved
    11·1 answer
  • Which material would be best for thawing frozen food quickly? O A. A plastic plate O B. A steel plate O C. A glass plate O D. A
    8·1 answer
  • The amount of force needed to keep a 0.5 kg football moving at a constant speed of 8 m/s
    11·1 answer
  • The force of attraction between things that have mass is called ________________.
    13·1 answer
  • The acceleration due to gravity jupiter is 25m/s Square . what does it mean<br>​
    6·2 answers
  • Find mass of the object
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!