Answer: The question has some details missing. here is the complete question ; Point charge 1.5 μC is located at x = 0, y = 0.30 m, point charge -1.5 μC is located at x = 0 y = -0.30m. What are (a)the magnitude and (b)direction of the total electric force that these charges exert on a third point charge Q = 5.0 μC at x = 0.40 m, y = 0
Explanation:
- a) First of all find the distance between the two charges;
- x = 0, y = 0.30 and x = 0.40 m, y = 0
hence, the force F = 2Kq1q2cosθ /r²...............equation 1
but cosθ = y/r = 0.3/0.5
cosθ = 0.6
plugging back to equation 1;
F = 2 x 9 x 10^9 x 1.5 x 10^-6 x 5 x 10^-6 /0.5^2
F = 540 x 10^-3
Magnitude of Force = 0.54N
b) Direction is at angle 90
Newton's motion laws state that if an object is at rest or in movement, it will tend to maintain its basal state.
<h3>What are Newton's motion laws?</h3>
Newton's motion laws are a set of scientific statements aimed at explaining the physical property of movement.
These laws explain why objects in movement tend to maintain the same velocity for a short period of time.
In conclusion, Newton's motion laws state that if an object is at rest or in movement, it will tend to maintain its basal state.
Learn more about Newton's motion laws here:
brainly.com/question/10454047
#SPJ1
Answer:
The minimum frequency is 702.22 Hz
Explanation:
The two speakers are adjusted as attached in the figure. From the given data we know that
=3m
=4m
By Pythagoras theorem

Now
The intensity at O when both speakers are on is given by

Here
- I is the intensity at O when both speakers are on which is given as 6

- I1 is the intensity of one speaker on which is 6

- δ is the Path difference which is given as

- λ is wavelength which is given as

Here
v is the speed of sound which is 320 m/s.
f is the frequency of the sound which is to be calculated.

where k=0,1,2
for minimum frequency
, k=1

So the minimum frequency is 702.22 Hz
B explanation : they are both filled to the same pint
Answer:
25 degrees
Explanation:
The angle of incidence equals the angle of reflection