Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
39.2 J
Explanation:
Step 1:
To find the potential energy the following formula is used.
Potential Energy = m × g × h
Where,
m = Mass
g = Acceleration due to gravity
h = Height
Step 2:
Here m = 4 kg, g = 9.8 m/s², h = 1 m
Potential Energy = ( 4 × 9.8 × 1)
= 39.2 J
Answer: Its A because i had the same question and it was a
Answer: Gravity
Explanation: Gravity is pulling down on the ball, making it stay on the floor
Answer:
The attached diagram explains the system,
Sum of Fy = 0
N=9.81
N - mgCos60 = 0
F= ukN= (0.53)(9.81) =
F= 5.12 N
So
F.d= 1/2(mv.v) - mgdsin60
-5.12*0.5 = 0.5*v^2 - 2*(9.81)*(0.5*sin60)
(a) v = 2.436 m/s
For deflection
-F.x = 1/2(mv.v) - mgxsin60 + 1/2 (k*x*x)
by solving for with values of v, m, g, F, k
800x^2 - 11.87 x - 5.938 = 0
by solving the quadratic equation
x = 0.093, -0.079
(b) x = 0.093 m
correct Answer is 0.093m
Explanation: