The answer is A.
Sy = 1650 x sin30.5 = 837.4 m toward south
Sx = 1650 x cos30.5 = 1421.7 m toward east
Answer:
Speed of the helium after collision = 246 m/s
Explanation:
Given that
Mass of helium ,m₁ = 4 u
u₁=598 m/s
Mass of oxygen ,m₂ = 32 u
u₂ = 401 m/s
v₂ =445 m/s
Given that initially both are moving in the same direction and lets take they are moving in the right direction.
Speed of the helium after collision = v₁
There is no any external force on the masses that is why the linear momentum will be conserve.
Initial linear momentum = Final linear momentum
P = m v
m₁u₁+m₂u₂ = m₁v₁+m₂v₂
598 x 4 + 32 x 401 = 4 x v₁+ 32 x 445
v₁ = 246 m/s
Speed of the helium after collision = 246 m/s
Answer:
B = 0.8 T
Explanation:
It is given that,
Radius of circular loop, r = 0.75 m
Current in the loop, I = 3 A
The loop may be rotated about an axis that passes through the center and lies in the plane of the loop.
When the orientation of the normal to the loop with respect to the direction of the magnetic field is 25°, the torque on the coil is 1.8 Nm.
We need to find the magnitude of the uniform magnetic field exerting this torque on the loop. Torque acting on the loop is given by :

B is magnetic field

So, the magnitude of the uniform magnetic field exerting this torque on the loop is 0.8 T.
When these bonds are destroyed, a reaction occurs. ... Vinegar reacting with limestone breaks the bonds of calcium carbonate and acetic acid.
Answer:
D = -4/7 = - 0.57
C = 17/7 = 2.43
Explanation:
We have the following two equations:

First, we isolate C from equation (2):

using this value of C from equation (3) in equation (1):

<u>D = - 0.57</u>
Put this value in equation (3), we get:

<u>C = 2.43</u>