Answer:
A) s=1/2at^2
t=√(2s/a)=√(2x400)/10.0)=9.0s
B) v=at
v=10.0x9=90m/s
The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
<span>won
adjective
Verb phrases are verbs that may function as a predicate, adjective, or adverb. </span>
(a) "That he said" is an adjective modifying "word". However, this contains the s ubject"he" and the verb "said". It is a clause and NOT a phrase. Phrases can only have either a verb or a noun.
<span>(b) There's only one verb "was" but it does not come with a complement, object, modifier, or other verb. Hence, it's NOT a verb phrase. </span>
<span>(c) "Shall be" consists of the modal shall and the be-verb be. This is a perfect example of a verb phrase that functions as a VERB PHRASE. </span>
<span>(d) "Roared" and "charged" are two verbs referring to different subjects. They do not come with a complement, object, modifier, or another verb. Hence, they're NOT a verb phrase. "As the bull charged" is a clause and not a phrase.</span>
Explanation:
speed of light= c
wave length= L
frequency= f
c=Lf → L= c/f → L= 3 × 10⁸/ 27 × 10⁹ → L = 1/90 ≈ 0.011 m