Answer:
no its not like the undertow in the ocean
Explanation:
There is a positive correlation between luminosity and mass of stars, meaning the more luminous a star is, the more massive it is likely to be as well. Given this, the masses of the stars should be in descending order of brightness.
Star 1 is the most luminous, so it should be heaviest, and the luminosity descends to Star 4.
Option B is the only chart that conforms to this, so it is the answer.
Answer is B
Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles
Explanation:
Momentum Is defined as the product of of mass and its velocity
Momentum (M) =mass *velocity
SI unit of momentum is kgm/s
The rate of change in momentum
=change in momentum / time
=(mv-mu)/t
Answer:
(a) Most reactive
Metal B
Metal D
Metal A
Least reactive
Metal C
(b) (i) Bubbles should form very slowly
(ii) No reaction takes place
Explanation:
(a) The given metals arranged in their order of reactivity are;
Most reactive
Metal B
Metal D
Metal A
Least reactive
Metal C
The other of reactivity is based on the nature of their reactivity of the metals in air
(b) (i) Based on the reactivity of the metals in air, whereby metal A reacts very slowly and an oxide is formed, we have that, based on the reactivity of the metal A, when mixed with dilute hydrochloric acid, bubbles should form very slowly
(ii) Similarly, given that metal C is unreactive, we have that when small pieces of metal C are added to dilute hydrochloric acid, no reaction takes place.