Answer:
a = 17.68 m/s²
Explanation:
given,
length of the string, L = 0.8 m
angle made with vertical, θ = 61°
time to complete 1 rev, t = 1.25 s
radial acceleration = ?
first we have to calculate the radius of the circle
R = L sin θ
R = 0.8 x sin 61°
R = 0.7 m
now, calculating at the angular velocity


ω = 5.026 rad/s
now, radial acceleration
a = r ω²
a = 0.7 x 5.026²
a = 17.68 m/s²
hence, the radial acceleration of the ball is equal to 17.68 rad/s²
Answer:
A. Argon
Explanation:
It is a noble gas, a group which is not reactive.
After traveling for 6.0 seconds, a runner reaches 10m/s. What is the runner's acceleration? Answer: 1.67 m/s2
Answer:
The speed of the sled is 3.56 m/s
Explanation:
Given that,
Mass = 2.12 kg
Initial speed = 5.49 m/s
Coefficient of kinetic friction = 0.229
Distance = 3.89 m
We need to calculate the acceleration of sled
Using formula of acceleration

Where, F = frictional force
m = mass
Put the value into the formula




We need to calculate the speed of the sled
Using equation of motion

Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value in the equation



Hence, The speed of the sled is 3.56 m/s.
Answer:
a ) 11.1 *10^3 m/s = 39.96 Km/h
b) T_{o2} =1.58*10^5 K
Explanation:
a)
= 11.1 km/s =11.1 *10^3 m/s = 39.96 Km/h
b)
M_O2 = 32.00 g/mol =32.0*10^{-3} kg/mol
gas constant R = 8.31 j/mol.K

So, 
multiply each side by M_{o2}, so we have

solving for temperature T_{o2}

In the question given,

T_{o2} =1.58*10^5 K