1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firlakuza [10]
3 years ago
14

a type of rock that forms when particles from other rocks or the remains of plants and animals are pressed and cemented together

Physics
1 answer:
Mademuasel [1]3 years ago
4 0
A sedimentary rock is a type of rock that forms when particles from other rocks or the remains of plants and animals are pressed and cemented together.
You might be interested in
Which of the following is true regarding the Earth's mantle?
Brilliant_brown [7]
B) It’s material moves due to convection currents.
6 0
3 years ago
Sally and Juan’s science teacher has directed the class to build a paper airplane. The challenge is to build an airplane that fl
devlian [24]
Evaluating a solution
8 0
3 years ago
Read 2 more answers
Suppose you're watching your favorite soap opera. After one of the main characters is thrown from a galloping horse, she suffers
Viktor [21]
She suffers from <span>Retrograde </span>amnesia 
5 0
3 years ago
Read 2 more answers
Two traveling sinusoidal waves are described by the wave functions y1 = 4.85 sin [(4.35x − 1270t)] y2 = 4.85 sin [(4.35x − 1270t
Tamiku [17]

Answer:

Approximately 9.62.

Explanation:

y_1 = 4.85\, \sin[(4.35\, x - 1270\, t) + 0].

y_2 = 4.85\, \sin[(4.35\, x - 1270\, t) + (-0.250)].

Notice that sine waves y_1 and y_2 share the same frequency and wavelength. The only distinction between these two waves is the (-0.250) in y_2\!.

Therefore, the sum (y_1 + y_2) would still be a sine wave. The amplitude of (y_1 + y_2)\! could be found without using calculus.

Consider the sum-of-angle identity for sine:

\sin(a + b) = \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b).

Compare the expression \sin(a + b) to y_2. Let a = (4.35\, x - 1270) and b = (-0.250). Apply the sum-of-angle identity of sine to rewrite y_2\!.

\begin{aligned}y_2 &= 4.85\, \sin[(\underbrace{4.35\, x - 1270\, t}_{a}) + (\underbrace{-0.250}_{b})]\\ &= 4.85 \, [\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Therefore, the sum (y_1 + y_2) would become:

\begin{aligned}& y_1 + y_2\\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t) \\ &\quad \quad \quad\;+\sin(4.35\, x - 1270\, t)\cdot \cos(-0.250) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \\[0.5em] &= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Consider: would it be possible to find m and c that satisfy the following hypothetical equation?

\begin{aligned}& (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c)\\&= 4.85\, [\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad\quad\; + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)] \end{aligned}.

Simplify this hypothetical equation:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\&=\sin(4.35\, x - 1270\, t)\cdot (1 + \cos(-0.250)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot \sin(-0.250)\end{aligned}.

Apply the sum-of-angle identity of sine to rewrite the left-hand side:

\begin{aligned}& m\cdot \sin((4.35\, x - 1270\, t) + c)\\[0.5em]&=m\, \sin(4.35\, x - 1270\, t)\cdot \cos(c) \\ &\quad\quad + m\, \cos(4.35\, x - 1270\, t)\cdot \sin(c) \\[0.5em] &=\sin(4.35\, x - 1270\, t)\cdot (m\, \cos(c)) \\ &\quad\quad + \cos(4.35\, x - 1270\, t)\cdot (m\, \sin(c)) \end{aligned}.

Compare this expression with the right-hand side. For this hypothetical equation to hold for all real x and t, the following should be satisfied:

\displaystyle 1 + \cos(-0.250) = m\, \cos(c), and

\displaystyle \sin(-0.250) = m\, \sin(c).

Consider the Pythagorean identity. For any real number a:

{\left(\sin(a)\right)}^{2} + {\left(\cos(a)\right)}^{2} = 1^2.

Make use of the Pythagorean identity to solve this system of equations for m. Square both sides of both equations:

\displaystyle 1 + 2\, \cos(-0.250) +  {\left(\cos(-0.250)\right)}^2= m^2\, {\left(\cos(c)\right)}^2.

\displaystyle {\left(\sin(-0.250)\right)}^{2} = m^2\, {\left(\sin(c)\right)}^2.

Take the sum of these two equations.

Left-hand side:

\begin{aligned}& 1 + 2\, \cos(-0.250) + \underbrace{{\left(\cos(-0.250)\right)}^2 + {\left(\sin(-0.250)\right)}^2}_{1}\\ &= 1 + 2\, \cos(-0.250) + 1 \\ &= 2 + 2\, \cos(-0.250) \end{aligned}.

Right-hand side:

\begin{aligned} &m^2\, {\left(\cos(c)\right)}^2 + m^2\, {\left(\sin(c)\right)}^2 \\ &= m^2\, \left( {\left(\sin(c)\right)}^2 +  {\left(\cos(c)\right)}^2\right)\\ &= m^2\end{aligned}.

Therefore:

m^2 = 2 + 2\, \cos(-0.250).

m = \sqrt{2 + 2\, \cos(-0.250)} \approx 1.98.

Substitute m = \sqrt{2 + 2\, \cos(-0.250)} back to the system to find c. However, notice that the exact value of c\! isn't required for finding the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c).

(Side note: one possible value of c is \displaystyle \arccos\left(\frac{1 + \cos(0.250)}{\sqrt{2 \times (1 + \cos(0.250))}}\right) \approx 0.125 radians.)

As long as \! c is a real number, the amplitude of (y_1 + y_2) = (4.85\, m)\cdot \sin((4.35\, x - 1270\, t) + c) would be equal to the absolute value of (4.85\, m).

Therefore, the amplitude of (y_1 + y_2) would be:

\begin{aligned}|4.85\, m| &= 4.85 \times \sqrt{2 + 2\, \cos(-0.250)} \\&\approx 9.62 \end{aligned}.

8 0
3 years ago
Which of the following is an example of a chemical property? Density Solubility Flammability Magnetism
choli [55]
The answer should be flammability
8 0
3 years ago
Other questions:
  • A sample of radium-226 will decay to ¼ of its original amount after 3200 years. What is the half-life of radium-226?
    13·1 answer
  • Can a person be moving in a positive direction even if their acceleration vector is negative ?
    15·2 answers
  • Large amplitude of sound vibrations will produce.....
    14·1 answer
  • Imagine that a star-forming cloud collapses but retains all of its mass in a single blob. In order to conserve angular momentum,
    6·2 answers
  • Starting from Joe's Gas Station, a car travels due north on Avenue A for 2.4 mi, then turns right and travels on Cedar Street fo
    12·1 answer
  • The largest source of available freshwater on Earth is _____.
    6·2 answers
  • Which diagram is the best representation of gas molecules in a closed container? A. Diagram A B. Diagram B C. Diagram C D. Diagr
    11·1 answer
  • Why do you ask me that’s all me the moon seem like they’re walking on Spring tomorrow on earth we are from your tractor to the g
    9·1 answer
  • Please help me!!!!! ​
    13·1 answer
  • If the velocity of an object is 9 m/s and its momentum is 72 kgm/s, what is its mass
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!