Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
The correct answer to the question is : Electric energy
EXPLANATION :
As per the question, we have an electric generator.
Before coming into any conclusion, first we have to understand the function of generator.
The generator is attached to the turbine. When the turbine rotates, the generator also starts rotating with it. Thanks to electromagnetic induction, the electricity is produced in the coil attached to the generator when it rotates.
Hence, from above, it is obvious that kinetic energy is converted into electric energy.
Answer:
Surely Achilles will catch the Tortoise, in 400 seconds
Explanation:
The problem itself reduces the interval of time many times, almost reaching zero. However, if we assume the interval constant, then it is clear that in two hours Achilles already has surpassed the Tortoise (20 miles while the Tortoise only 3).
To calculate the time, we use kinematic expression for constant speed:

The moment that Achilles catch the tortoise is found by setting the same final position for both (and same time as well, since both start at the same time):

The answer is A. Polarized in a vertical plane
If positioned correctly, a polarized lenses can block all reflected light from horizontal surface such as road
Answer:
Explanation:
5 C = 278 K
25 C = 298 K
V1 / T1 = V2 / T2
1.5L / 278 K = V2 / 298 K
V2 = (1.5L * 298) / 278
V2 = 1.61 L