The forces of gravity between two objects are inversely proportional to
the square of the distance between them. So reducing the distance
by 1/2 means increasing the gravitational force by 2² = 4 times.
The 1 million newtons becomes 4 million newtons.
Note that this does NOT mean the satellite's altitude above the surface.
When you're calculating gravitational forces, it's the distance between
the centers of the objects. So the question is a meaningful exercise
only if we use the distance between the satellite and the planet's center.
Neglecting air resistance, the acceleration of the ball is
the acceleration of gravity ... 9.8 m/s² downward.
It doesn't matter what you toss, what it's mass is, what it weighs,
what color it is, how much it cost, what its shape or size is, how
fast you toss it, in what direction, or how long it's in the air.
Its horizontal acceleration is zero and its vertical acceleration
is 9.8 m/s² downward, from the moment it leaves your hand
until the moment somebody catches it or it hits the ground.
According to Coulomb's Law , The size of the force varies inversely as the square of the distance between the two charges. So ,if the distance between the two charges is doubled, the electrostatic force will become weak by one fourth of the original force.