Answer:
3.5m/s^2
Explanation:
From Newton's second Law of Motion
F = ma
Where F is the applied force, m is the mass of the object and a is the acceleration.
F = 350 N
Mass = 100kg
350N = 100×a
a = 350/100
a = 3.5m/s^2
The acceleration of the object will be 3.5m/s^2
So I'm a junior. I am currently taking AP Calc BC and AP Physics B.
As of now, I'm not sure if I should take AP Probability and Statistics or Differential Equations/Calc III next year. Also, I'm debating between taking AP Physics C or AP Chemistry.
Which ones do you think would look better on a transcript? I heard that Diffeq/CalcIII is harder than AP ProbStat, but ProbStat is an AP course which will be weighted heavier. Also, should I take Physics C since i've taken Physics B this year already?
This is related to the energy carried by photons of light the energy of each photon is proportional to the frequency of the light since red light has a lower frequency then violet light and photons of red light carry less energy than the photons of violet light as a result the red protons eject electrons that have less energy than the ejected electrons by Violet photons
Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
Let, 1st force = a
2nd force = b
A.T.Q,
a+b = 10
a-b = 6
Calculate for a & b, you'll get a=8 & b= 2
After increasing by 3, it'll be a = 8+3 = 11 & b=2+3 = 5
Resultant force at 90 degree angle = 11+5 = 16 Newtons