Answer:
Options: 1, 3, 5, 7, 8
Explanation:
In steady state at the point when the current at each point in the circuit is
consistent (doesn't change with time).
- In numerous viable circuits, the steady state is accomplished in a brief period of time.
-
In the steady state, the charge (or current) streaming into any point in the circuit needs to equivalent the charge (or current) streaming out which is Kirchhoff's Node or Current law.
Answer:
The speed and direction of the apple is 1.448 m/s and 66.65°.
Explanation:
Given that,
Mass of apple = 0.110 kg
Speed = 1.13 m/s
Mass of orange = 0.150 kg
Speed = 1.25 m/s
Suppose we find the final speed and direction of the apple in this case
Using conservation of momentum:
Before:
In x direction,



In y direction = 0
After:
is velocity of the apple in the y direction
is the velocity of the apple in the x direction
Momentum again:
In x direction,



In y-direction,



We need to calculate the speed of apple

Put the value into the formula


We need to calculate the direction of the apple
Using formula of angle

Put the value into the formula


Hence, The speed and direction of the apple is 1.448 m/s and 66.65°.
Answer:
= 0.0050 M
= 0.0155 M
Explanation:
Initial moles of
= 0.072 mole
Volume of container = 3.9 L
Initial concentration of
The given balanced equilibrium reaction is,

Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[I]^2}{[I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BI%5D%5E2%7D%7B%5BI_2%5D%7D)

we are given : 
Now put all the given values in this expression, we get :


So, the concentrations for the components at equilibrium are:
![[I]=2\times x=2\times 0.0025=0.0050](https://tex.z-dn.net/?f=%5BI%5D%3D2%5Ctimes%20x%3D2%5Ctimes%200.0025%3D0.0050)
![[I_2]=0.018-x=0.018-0.0025=0.0155](https://tex.z-dn.net/?f=%5BI_2%5D%3D0.018-x%3D0.018-0.0025%3D0.0155)
Hence, concentrations of
and
are 0.0050 M ad 0.0155 M respectively.
Answer:
Using the VSEPR theory, the electron bond pairs and lone pairs on the center atom will help us predict the shape of a molecule. The shape of a molecule is determined by the location of the nuclei and its electrons. The electrons and the nuclei settle into positions that minimize repulsion and maximize attraction.Explanation:
Answer:
7.39ev
Explanation:
Energy levels are found inside the atom. Electrons occupy these energy levels depending on the energy they possess. Electrons can move from one energy level to another due to absorption or emission of a photon or other factors. As the electron, jumps from a higher energy level to a lower energy level emitting a photon of measurable frequency, the photon carries energy equal to the amount of energy between the gap of the levels. This idea was first proposed by Neils Bohr and became the forerunner of the wave mechanical model of the atom.
Hence the energy of a photon is the energy of the gap between the two energy levels. Since Ea= 2.48ev and Eg= 10.38 ev.
If an electron jumps from Ea to Eg, the energy of the photon absorbed is given by;
E=Eg-Ea
E= 10.38ev - 2.48ev
E= 7.39ev