Actual yield over theoretical yield, then multiply by 100
Physical Change because a new substance was not created and if it was a chemical change, a new substance would have to be created.
Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
Explanation:
in the case of blood loss, you need blood from someone with your blood type or with universal donor type