Answer:
C
Step-by-step explanation:
write an equation for the costs:
if x is the number of sodas
and y is the number of waters
2.75x + 2y <= 15
(<= is less than or equal to)
if we substitute 3 for y
we get 2.75x + 2(3) <= 15
2.75x + 6 <= 15
2.75x <= 9
9 / 2.75 = 3.2727
however, you cannot buy part of a soda
so, round to 3
you also cannot buy negative sodas
so, the answer is C
9514 1404 393
Answer:
(x, y, z) = (-1, 0, -3)
Step-by-step explanation:
We notice that the coefficients of z are such that elimination of the z term from the equations is made easy.
Adding equations 1 and 2:
(2x -3y -2z) +(x +3y +2z) = (4) +(-7)
3x = -3
x = -1
Adding equations 2 and 3:
(x +3y +2z) +(-4x -4y -2z) = (-7) +(10)
-3x -y = 3
Substituting for x, we get ...
(-3)(-1) -y = 3
0 = y . . . . . . . . . . . add y-3 to both sides
Then z can be found from any equation. Substituting for x and y in the second equation gives ...
-1 +2z = -7
2z = -6 . . . . . add 1
z = -3 . . . . . .divide by 2
The solution is (x, y, z) = (-1, 0, -3).
Answer:
p²q³ + pq and pq(pq² + 1)
Step-by-step explanation:
Given
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Required
Collect like terms
We start by rewriting the expression
3p²q² - 3p²q³ +4p²q³ -3p²q² + pq
Collect like terms
3p²q² -3p²q² - 3p²q³ +4p²q³ + pq
Group like terms
(3p²q² -3p²q²) - (3p²q³ - 4p²q³ ) + pq
Perform arithmetic operations on like terms
(0) - (-p²q³) + pq
- (-p²q³) + pq
Open bracket
p²q³ + pq
The answer can be further simplified
Factorize p²q³ + pq
pq(pq² + 1)
Hence, 3p²q² - 3p²q³ +4p²q³ -3p²q² + pq is equivalent to p²q³ + pq and pq(pq² + 1)
<span>arc length = circumference • [central angle (degrees) ÷ 360]
Solving this equation for circumference:
</span>
<span>circumference = arc length / (central angle / 360)
</span><span>circumference = 12 / (85/360)
</span>circumference = 12 / <span><span>0.2361111111
</span>
</span>
<span>circumference =
</span>
<span>
<span>
<span>
50.8235294118
</span>
</span>
</span>
Source:
http://www.1728.org/radians.htm
Answer:
c!!
Step-by-step explanation:
last saturday i did a worksheet that had the sae question