1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fofino [41]
3 years ago
9

I’m confused on this one

Mathematics
1 answer:
scoray [572]3 years ago
6 0
The general form of slope-intercept form is y=mx+b

m stands for the slope
b stands for the y intercept

They are giving you m so you can replace m with -4/5 ⇒ y=-4/5x+b

Now you just need to find b. They also give you the point (0,-3). This means that when x is 0, y is equal to -3.

Lets go back to y=-4/5x+b and replace x with 0 and y with -3.
⇒ -3=(-4/5)(0) + b
⇒ -3= 0+b
⇒ -3=b 
⇒ b=-3

Now that you have m and b, you can find your final answer in the form y=mx+b
⇒ y=-4/5x + (-3)
⇒ y= -4/5x - 3


You might be interested in
Given that 1 x2 dx 0 = 1 3 , use this fact and the properties of integrals to evaluate 1 (4 − 6x2) dx. 0
Debora [2.8K]

So, the definite integral  \int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74

Given that

\int\limits^1_0 {x^{2} } \, dx = 13

We find

\int\limits^1_0 {(4 - 6x^{2} )} \, dx

<h3>Definite integrals </h3>

Definite integrals are integral values that are obtained by integrating a function between two values.

So, Integral \int\limits^1_0 {(4 - 6x^{2} )} \, dx

So, \int\limits^1_0 {(4 - 6x^{2} )} \, dx = \int\limits^1_0 {4} \, dx - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - \int\limits^1_0 {6x^{2} } \, dx \\=  4[x]^{1}_{0}    - 6\int\limits^1_0 {x^{2} } \, dx \\= 4[1 - 0]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4[1]    - 6\int\limits^1_0 {x^{2} } \, dx\\= 4    - 6\int\limits^1_0 {x^{2} } \, dx

Since

\int\limits^1_0 {x^{2} } \, dx = 13,

Substituting this into the equation the equation, we have

\int\limits^1_0 {(4 - 6x^{2} )} \, dx = 4 - 6\int\limits^1_0 {x^{2} } \, dx\\= 4 - 6 X 13 \\= 4 - 78\\= -74

So, \int\limits^1_0 {(4 - 6x^{2} )} \, dx= - 74

Learn more about definite integrals here:

brainly.com/question/17074932

4 0
2 years ago
Complete the following statement: f(3)=_____
victus00 [196]
Using this equation, f(3) = 23.

In order to find the value of f(3), we need to take the f(x) equation and put 3 everywhere we see x. Then we follow the order of operations to solve. So, let's start with the original. 

f(x) = 2x^2 + 5sqrt(x - 2) 

Now place 3 in for each x. 

f(3) = 2(3)^2 + 5sqrt(3 - 2)

Now square the 3.

f(3) = 2(9) + 5 sqrt(3 - 2)

Do the subtraction inside of the parenthesis. 

f(3) = 2(9) + 5sqrt(1)

Take the square root

f(3) = 2(9) + 5(1)

Multiply. 

f(3) = 18 + 5

And add. 

f(3) = 23

4 0
3 years ago
What is the converse of the following statement?
photoshop1234 [79]
Hi I wanna is a time for us tomorrow morning to go to the movies and I re66
5 0
3 years ago
What is the least common denominator (LCD) of 1/2 and 3/5 ?
zavuch27 [327]
10 is the least common denominator
8 0
3 years ago
Read 2 more answers
Rationalise the denominator of:<br>1/(√3 + √5 - √2)​
Paul [167]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} }

can be re-arranged as

\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}   -   \sqrt{2}   +  \sqrt{5} }

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{( \sqrt{3}  -  \sqrt{2} ) +  \sqrt{5} }  \times \dfrac{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }{( \sqrt{3}  -  \sqrt{2} ) -  \sqrt{5} }

We know,

\rm :\longmapsto\:\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ {( \sqrt{3}  -  \sqrt{2} )}^{2}  -  {( \sqrt{5}) }^{2} }

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{3 + 2 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{5 - 2 \sqrt{6}   - 5}

\rm \:  =  \: \dfrac{ \sqrt{3} -  \sqrt{2}   -  \sqrt{5} }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{ - ( -  \sqrt{3} +  \sqrt{2}  + \sqrt{5}) }{ - 2 \sqrt{6}}

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{-  \sqrt{3} +  \sqrt{2}  + \sqrt{5}}{2 \sqrt{6}}  \times \dfrac{ \sqrt{6} }{ \sqrt{6} }

\rm \:  =  \: \dfrac{-  \sqrt{18} +  \sqrt{12}  + \sqrt{30}}{2  \times 6}

\rm \:  =  \: \dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}

\rm \:  =  \: \dfrac{-  3\sqrt{2} + 2 \sqrt{3}   + \sqrt{30}}{12}

Hence,

\boxed{\tt{ \rm \dfrac{1}{ \sqrt{3}  +  \sqrt{5}  -  \sqrt{2} } =\dfrac{-  \sqrt{3 \times 3 \times 2} +  \sqrt{2 \times 2 \times 3}  + \sqrt{30}}{12}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>More Identities to </u><u>know:</u></h3>

\purple{\boxed{\tt{  {(x  -  y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}}

\purple{\boxed{\tt{  {(x   +   y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}}

\purple{\boxed{\tt{  {(x - y)}^{3} =  {x}^{3} - 3xy(x  -  y) -  {y}^{3}}}}

\pink{\boxed{\tt{  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

\pink{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2} = 4xy}}}

6 0
3 years ago
Other questions:
  • Can someone please help me
    5·2 answers
  • https://brainly.com/question/10271541 SIMPLIFY THE EXPRESSION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    15·2 answers
  • The sum of the measures of the angles of a triangle is 180. The sum of the measures of the second and third angles is five times
    11·1 answer
  • Pls help ASAP will give brianist
    14·1 answer
  • Write 63 as a sum of tens and ones
    8·1 answer
  • Factorise fully 4x +22
    5·1 answer
  • 1. What does PEMDAS stand for?<br> P:<br> E:<br> M:<br> D:<br> A:<br> S:
    5·2 answers
  • Natalia and Riley hike 10 6/11 miles. In one day, Ricardo hiked to 2 3/4 times as far as Natalia and Riley hiked. how far did he
    13·1 answer
  • I'll mark you brainliest if you get this correct<br> PLEASE ANSWER<br> 10 points
    11·1 answer
  • Help please question in the picture
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!