Answer:
Explanation:
Formula and givens
- λ = c / f
- λ is the wavelength
- c = the speed of light
- f = the frequency
- c = 3*10^8
- f = 7.89 * 10^14
λ = ?
Solution
λ = 3*10^8 / 7.89*10^14
λ = 3*10^8/7.89*10^14
λ = 2.36 * 10^7
λ = 236 nanometers. What you use as your solution depends on what what you have been taught.
Answer:
the impulse experienced by this object is 4 Ns
Explanation:
Given;
mass of the object, m = 3 kg
velocity of the object, v = 4 m/s
resistive force, F = 20 N
duration of impact, t = 0.2 s
The impulse experienced by this object is calculated as follows;
J = F x t
J = 20 x 0.2
J = 4 Ns
Therefore, the impulse experienced by this object is 4 Ns
Answer:
A decreases while B increases because the equilebrium only reacts to different sphers of this substance.
Explanation:
As the speed of wave decreases, the wavelength of the wave decreases.
<h3>Refraction</h3>
We know that as a wave travels from one medium to another its speed decreases depending on if the first medium is less dense than the second medium or increases depending on if the first medium is more dense than the second medium. This is known as refraction
Now, we know that the speed of a wave v = fλ where
- f = frequency and
- λ = wavelength. Since f is constant, v ∝ λ.
The ratio of the speed in medium one to speed in medium two is called the refractive index of medium 1 to 2.
<h3>Explaining the diagram</h3>
From the diagram, we see that the wavelength in medium 1 is longer than that in medium 2. Since wavelength and speed are proportional, so the speed in medium 1 is also greater than the speed in medium 2.
So, As the speed of wave decreases, the wavelength of the wave decreases.
Learn more about refraction here:
brainly.com/question/25758484
I posted this because I got it correct. The answer is 28J.