In collision of the steel ball and the steel plate, the collision is an inelastic collision and there is loss in the kinetic energy.
<h3>What are collisions?</h3>
Collisions occur when two objects that are moving in the same directions or in different direction meet each other and collide.
There are two types of collisions:
- elastic collision - the kinetic energy is conserved
- inelastic collision - there is a loss in kinetic energy
In the collision of the steel ball and the steel plate, there is loss in the kinetic energy of the steel ball which is converted to sound energy.
In conclusion, the collision of the steel and steel plate is an inelastic collision.
Learn more about collisions at: brainly.com/question/7694106
#SPJ1
Answer:
its most definitely c. trust me
Explanation:
Answer:
Mass of the sled in the snow 83.33 kg.
<u>Explanation</u>:
Given that,
Force applied to move the sled in the snow (F) = 75N

We know that
Newton's second law of motion is

F = ma (Or "force" is equal to "mass" times "acceleration".)
So if we move this around we can isolate mass and get mass


M = 83.33 kg
Mass of the sled in the snow <u>83.33 kg.</u>
M1 = 750Kg, v1 = 10m/s
m2 = 2500Kg , v2= 0 (because in problem say cuz that object don t move).
The momentum before colision is equal with the momentum after colision:
m1v1 + m2v2 = (m1+m2)v3 => v3 is the velocity after colison and that s u want to caluclate for your problem
=> m1v1 = (m1+m2)v3 => v3 = m1v1/(m1+m2) now u should do the math i think v3 prox 2,4 but not sure u should caculate