Answer:
H₂O + CO₂ → H₂CO₃
Option D is correct.
Law of conservation of mass:
According to this law, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Now we will apply this law to given chemical equations:
A) H₂ + O₂ → H₂O
There are two H and two O atoms present on left side while on right side only one O and two H atoms are present so mass in not conserved. This option is incorrect.
B) Mg + HCl → H₂ + MgCl₂
In this equation one Mg, one H and one Cl atoms are present on left side of equation while on right side two H, one Mg and two chlorine atoms are present. This equation also not follow the law of conservation of mass.
C) KClO₃ → KCl + O₂
There are one K, one Cl and three O atoms are present on left side of equation while on right side one K one Cl and two oxygen atoms are present. This equation also not following the law of conservation of mass.
D) H₂O + CO₂ → H₂CO₃
There are two hydrogen, one carbon and three oxygen atoms are present on both side of equation thus, mass remain conserved. This option is correct.
Answer:
The correct answer is 0.206 moles
Explanation:
According to the given scenario, the calculation of the number of moles of ammonium chloride is available in the resulting solution is given below:
Given that
Amount of
is 11.0 grams
And, the volume is 235 mL
Now the molar mass of
is 53.49g/mol
So, the number of moles presented is
= 11.0 ÷ 53.49
= 0.206 moles
hence, the number of moles of ammonium chloride are available in the resulting solution is 0.206 moles
Its D for plato.
by other people who asked
Answer: B- Chemical bonds are formed. Energy is released in the form of heat.
Explanation: I hoped that helped !
The answer would be B, an electron because the proton is positive, neutron is neutral, and the nucleus is the center of the atom.