Use the molar mass of ammonia to change the grams to moles and then use mole-mole ratio
100. g NH3 (1 mol NH3/ 17.04 g) (3 mol H2/ 2 mol NH)= 8.80 moles H2
Answer:
B sugar in water
Explanation:
because sugar dissolves in water while the others don't
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm
V ( H2SO4) = 35 mL / 1000 => 0.035 L
M ( H2SO4) = ?
V ( NaOH ) = 25 mL / 1000 => 0.025 L
M ( NaOH ) = 0.320 M
number of moles NaOH:
n = M x V
n = 0.025 x 0.320 => 0.008 moles of NaOH
Mole ratio:
<span>2 NaOH + H2SO4 = Na2SO4 + 2 H2O
</span>
2 moles NaOH ---------------------- 1 mole H2SO4
0.008 moles moles NaOH ---------- ??
0.008 x 1 / 2 => 0.004 moles of H2SO4 :
Therefore:
M ( H2SO4) = n / V
M = 0.004 / 0.035
= 0.114 M
hope this helps!
The answears are in the attached photo.