Answer:

Explanation:
For this case we have the following info given:
Number of Na+ ions 
Each ion have a charge of +e and the crage of the electron is 
The time is given
if we convert this into seconds we got:

Now we can use the following formula given from the current passing thourhg a meter of nerve axon given by:

Where N represent the number of ions, e the charge of the electron and Q the total charge
If we replace on this case we have this:

And from the general definition of current we know that:

And since we know the total charge Q and the time we can replace:

The current during the inflow charge in the meter axon for this case is 
Answer: The magnitude of the current in the second wire 2.67A
Explanation:
Here is the complete question:
Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?
Explanation: Please see the attachments below
it's how much it weighs and how much force is pushing on it like a egg if i drop it the weigh can cause it to break and how much force the gravity is pushing on it.
Answer:
The work done in winding the spring gets stored in the wound up spring in the form of elastic potential energy (i.e potential energy due to change in shape). ... During this process, the potential energy stored in it gets converted to kinetic energy. This turns the wheels of the toy car.
Explanation:
That's efficiency. There's no law that it must be stated in percent.