1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
2 years ago
15

Which method is used to deliver heat in most central heating systems?

Physics
2 answers:
Wewaii [24]2 years ago
5 0
Theu use convection currents to blow the air aroubd the house
inessss [21]2 years ago
4 0
The right  answer is B. hope this helps you :)
You might be interested in
Describe how freezing could be used to remove sugar from a mixture of sugar and water?
VARVARA [1.3K]
When the mixture (the sugar and water) is frozen, it separates. The water molecules get closer together, separating and pushing the sugar crystals to the top.<span />
7 0
3 years ago
Read 2 more answers
When you push a child on a swing, your action is most effective when your pushes are timed to coincide with the natural frequenc
OleMash [197]

Answer:

T = 4.48 s

we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different

Explanation:

Natural frequency of a simple pendulum of L length is given as

f = \frac{1}{2\pi}\sqrt{\frac{g}{L}}

so the time period of the oscillation is given as

T = 2\pi \sqrt{\frac{L}{g}}

so we will have

L = 5 m

T = 2\pi\sqrt{\frac{5}{9.81}}

T = 4.48 s

also from above formula we can see that this time period is independent of the mass of the child so answer would be same if the child mass is different

3 0
3 years ago
7) Three resistors having resistances of 4.0 Ω, 6.0 Ω, and 10.0 Ω are connected in parallel. If the combination is connected in
viva [34]

Answer:

A, 0.59A

Explanation:

The total resistance in the circuit is the resistances in parallel plus that in series.

Total resistance for those in parallel is;

1/(1/4 +1/6 +1/10) = 1/ (15+10+6 /60)

1/(31/60)= 60/31 ohms

Hence total resistance of the circuit is;

60/31 + 2 = (60+62)/31 = 122/31=3.94 ohms

To calculate the current flowing through the 10ohm resistance we need to know the voltage drop by subtracting the voltage drop in the 2ohm resistance from the total voltage drop.

Voltage drop on the 2 ohm resistance is;

Current on the 2 ohm resistor × 2 ohms

V = I ×R ; I - current

R - resistance

Current drop on the 2ohm resistance is;

Total voltage in the circuit/ total resistance in the circuit

12/3.94= 3.05A

Voltage drop on the 2 ohm resistance;

3.05 × 2 = 6.10volts

Hence voltage drop on the parallel resistance would be ;

12-6.10= 5.90V

Now voltage drop in a parallel circuit is the same hence 5.90v is dropped in each of the parallel resistance.

That said, the current drop on the 10 ohm resistor would be;

5.90/10 = 0.59A

Remember V= I× R so that I = V/R

6 0
3 years ago
A 94.7 kg horizontal circular platform rotates freely with no friction about its center at an initial angular velocity of 1.75 r
Marta_Voda [28]

Answer:

The angular velocity of the platform is 1.114 rad/s.

Explanation:

Step 1:  Given data

Mass of the horizontal circular platform = 94.7 kg

Mass of the monkey = 21.1 kg

Initial angular velocity = 1.75 rad/s

A monkey drops a 9.25 kg bunch of bananas

They hit the platform at 4/5 of its radius from the center

Model the platform as a disk of radius 1.63 m

Step 2: Calculate the moment of inertia of the disk

I = ½ * m * r² = ½ * 94.7 * 1.63² = 125.80

Step 3: Calculate the initial angular momentum

I = 125.80 * 1.75 = 220.15

Step 4: Calculate the moment of inertia for the bananas

For the bananas, r = 4/5 * 1.63 = 1.304 m

I = 9.25 * 1.304² = 15.73

Step 5: Calculate Moment of inertia for the monkey

I = 21.1 * 1.63² = 56.06

Step 6: Total moment of inertia = 125.80 + 15.73 + 56.06 = 197.59

Step 7: Calculate final angular momentum = 197.59 * ω

197.59 * ω = 220.15

ω = 220.15 / 197.59

This is approximately 1.114 rad/s.

3 0
3 years ago
A tennis ball is released from a height of 4.0 m above the floor. After its third bounce off the floor, it reaches a height of 1
diamong [38]

Answer:

The percentage of its mechanical energy does the ball lose with each bounce is 23 %

Explanation:

Given data,

The tennis ball is released from the height, h = 4 m

After the third bounce it reaches height, h' = 183 cm

                                                                       = 1.83 m

The total mechanical energy of the ball is equal to its maximum P.E

                                      E = mgh

                                          = 4 mg

At height h', the P.E becomes

                                      E' = mgh'

                                           = 1.83 mg

The percentage of change in energy the ball retains to its original energy,

                                 \Delta E\%=\frac{1.83mg}{4mg}\times100\%

                                  ΔE % = 45 %

The ball retains only the 45% of its original energy after 3 bounces.

Therefore, the energy retains in each bounce is

                                   ∛ (0.45) = 0.77

The ball retains only the 77% of its original energy.

The energy lost to the floor is,

                                E = 100 - 77

                                   = 23 %

Hence, the percentage of its mechanical energy does the ball lose with each bounce is 23 %      

5 0
3 years ago
Other questions:
  • Which of the 25 worst earthquakes in history will you do your research on? Why did you choose this earthquake?
    7·1 answer
  • How many places are there for electrons in the innermost shell of an atom?
    14·1 answer
  • A capacitor has plates of area 8.25 * 10 ^ - 5 m ^ 2 . To create a capacitance of 3.35*10^ -10 F , how far apart should the plat
    8·1 answer
  • Which cell process occurs only in organisms that
    7·1 answer
  • What is atomic theory and how has it changed over time?
    6·2 answers
  • A small sphere is hung by a string from the ceiling of a van. When the van is stationary, the sphere hangs vertically. However,
    10·1 answer
  • Two horizontal forces act on a 1.4 kg chopping block that can slide over a friction-less kitchen counter, which lies in an xy pl
    13·1 answer
  • An elephant's legs have a reasonably uniform cross section from top to bottom, and they are quite long, pivoting high on the ani
    7·1 answer
  • A 210 Ohm resistor uses 9.28 W of
    11·1 answer
  • to keep everything the same between the man and the boy, the table below for the mans motion covers the same interval as the one
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!