40+90=130
180-130=50
50+130=180
x=130
50+x=180
notice, the circle is missing 1/4, so the area of it is just 3/4 of the whole area of the circle.
![\bf \textit{area of a circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=8 \end{cases}\implies A=\pi 8^2\implies A=64\pi \\\\\\ \stackrel{whole}{\cfrac{4}{4}}-\stackrel{one~quarter}{\cfrac{1}{4}}=\cfrac{3}{4}~\hfill \cfrac{3}{4}\cdot 64\pi \implies 48\pi \implies \stackrel{\pi =3.14}{150.72} \\\\\\ ~\hspace{34em}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D8%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%208%5E2%5Cimplies%20A%3D64%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bwhole%7D%7B%5Ccfrac%7B4%7D%7B4%7D%7D-%5Cstackrel%7Bone~quarter%7D%7B%5Ccfrac%7B1%7D%7B4%7D%7D%3D%5Ccfrac%7B3%7D%7B4%7D~%5Chfill%20%5Ccfrac%7B3%7D%7B4%7D%5Ccdot%2064%5Cpi%20%5Cimplies%2048%5Cpi%20%5Cimplies%20%5Cstackrel%7B%5Cpi%20%3D3.14%7D%7B150.72%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chspace%7B34em%7D)
Answer:
- The circumference of the circle in term of pi = 10π inches
- The circumference of the circle us 3.14 as pi = 31.4 inches
Step-by-step explanation:
Given
The radius of the circle = r = 5 in
We know that diameter is twice the radius.
so d = 2r = 2(5) = 10 in
<u>Finding the circumference of the circle in terms of pi</u>
Using the formula to find the circumference of the circle
C = dπ
C = 10×π
C = 10π inches
Thus, the circumference of the circle in term of pi = 10π inches
<u>Finding the circumference of the circle using π = 3.14</u>
We know that the formula to find the circumference of the circle
C = dπ
Given
π = 3.14
substituting π = 3.14 to find the circumference of the circle
C = 10×3.14
C = 31.4 inches
Thus, the circumference of the circle = 31.4 inches
800,000,000.00+70,000,000.00+6,000,000.00+500,000.00+40,000.00+3,000.00+200.00+10.00+0.00+0.20+0.05